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PREFACE

To effectively address the problems of fault-tolerant avionics and control
system validation, NASA-Langley Research Center has conceived and sponsored a
series of working group meetings with the objective of identifying and address-
ing critical issues related to the validation process. The first working group
meeting in this series, Working Group I, was held in March 1979,

Working Group I provided a forum for the exchange of ideas on fault-
tolerant avionics and control system validation. The state of the art in
fault-tolerant computer validation was examined in order to begin the estab-
lishment of a framework for future discussions of validation research for
fault-tolerant avionics and flight control systems. The results of Working
Group I and the evolution of the Avionics Integrated Research Laboratory
(AIRLAB) by NASA-Langley Research Center provided impetus for a second working
group meeting.

The objective of Working Group II was to identify, beginning with the
ideas provided by Working Group I, specific validation tasks which could bene-
fit substantially from the existence of AIRLAB. To provide an initial focus,
validation issues specifically related to two fault-tolerant computers cur-
rently being designed and developed under the sponsorship of NASA-Langley
Research Center, namely, SIFT and FTMP, were considered. Particular validation
tasks for these computers were identified at a preliminary Working Group II
meeting held at the Research Triangle Institute (RTI) in September. The tasks
generated at this meeting served as a starting point for the larger Working
Group II meeting held at NASA-Langley Research Center in October.

The activities of Working Group II during the two-day session in October
centered around the previously defined validation tasks. These tasks were
partitioned into three major categories:

1. Confirmation of System Reliability
2. Fault Processing Verification
3. Fault Processing Characterization

Working Group II attendees evaluated the preliminary proposed tasks in each of
these areas and proposed additional tasks.

The Working Group II meeting was conceived and sponsored by personnel at
NASA-Langley Research Center, in particular Billy L. Dove and A. 0. Lupton.
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1.0 INTRODUCTION AND OVERVIEW

1.1 Motivation for the Problem

In 1979 commercial air carriers in the United States paid, on the average,
an increase of 70% in their annual fuel bill over the previous year. This
statistic highlights the importance of developing energy efficient aircraft.
Under the sponsorship of NASA-Langley, the ACEE Energy Efficient Transport
Technology effort has been established to develop the technology required to
support this effort.

New low-drag aerodynamic structures show great promise for lowering fuel
consumption. However, as a consequence of their structure, wing and tail de-
signs show significant increases in loading and decreases in stability that
must be alleviated by the introduction of sensors, actuators, and digital elec-
tronics to dynamically alter control surfaces in flight. In certain future
designs this active control system will be crucial to flight; its use will not
be optional and no manual override or backup will be employed. Thus, the de-
velopment of high integrity, active control systems technology is an integral
part of the present direction of the Energy Efficient Transport Technology ef-
fort. The validation process must, of necessity, be a part of this effort.

1.2 Current Status of the Validation Process

While a great deal of work has gone on in the area of fault-tolerant sys-
tem design, the problem of validating ultra-reliable systems is just beginning
to be addressed. The current state of the art is given in summary form in
Sections 1.4.1 through 1.4.3 of this report.

1.3 Fault-Tolerant Systems Technology Development

The development of active control systems has many facets, and the scope
of this report is limited to the development of the technology required to sup-
port the fault-tolerant system's aspect of active controls. Much of the work
reported takes the even narrower view of technology development for fault-
tolerant computer systems. This is a reasonable limitation initially, and it
is anticipated that many useful extensions can readily be made later.

The development of fault-tolerant systems technology involves design,
assessment, validation, and maintenance of an experience base for candidate
systems. NASA-Langley has, for several years, supported the design of two
representative fault-tolerant computer systems - SIFT and FTMP. These systems
represent distinct approaches to the implementation of a system which must
"provide flight crucial functions with a failure probability of less than
10-9 at 10 hours."



A prototype version of each of these systems will be delivered to NASA-
Langley in 1980 for assessment and validation. The knowledge gained from these
systems will be used as an experience base to be retained and disseminated for
understanding in the development of the next generation of systems.

It is envisioned that the assessment, validation, and experience base
activities will be supported by a specialized facility, the Avionics Integrated

Research Laboratory, which has been defined by NASA-Langley and will provide
the capability to:

1) develop the technology and methodology required to integrate
avionic and control functions for aircraft of the 1990's and
beyond,

2) evaluate and study candidate system architectures,

3) validate implementation technologies, and

4) establish a data base of performance, reliability, and experiment

statistics.

1.4 Fault-Tolerant Systems Validation Technology Development

One of the most important and challenging aspects of fault-tolerant sys-
tems development is the validation process. The validation process comprises
the activities required to insure the agreement of the system realization with
the system specification. This effort is significant and requires the develop-
ment of technology in its own right.

Validation is not a new problem. Validation techniques exist and have
been applied to many digital electronic avionics and control systems presently
in use, such as the F-III redundant Mark II avionics, the B-I redundant avion-
ics, the F-18 quad redundant digital flight control, the F-8 triplex digital
fly-by-wire system, and the Space Shuttle quad redundant avionics and control
backup system.

Validation activities have traditionally been a part of the digital system
1ife cycle shown in Figure 1.1. Applied to avionics systems (as shown in
Figure 1.2), this process includes some very familiar, concrete, and trusted
tasks, such as bench tests, "hot-bench” tests, ground tests in the aircraft,
and flight tests in experimental configurations.

None of the tasks of the past can be summarily dismissed as inappropriate
to the problem at hand, but rather a more precise, systematic, disciplined, and
extensive approach must be evolved to incorporate and augment existing tech-
nigues. The properties that distinguish ultra-reliable systems validation are
summarized in Table 1.1.

The state of the art of validation was discussed as a portion of the
agenda of Working Group I (ref. 1), an earlier NASA-Langley-sponsored effort.
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The results of that discussion are summarized here as preliminary to the frame-
work of validation presented in Section 2.0 of this report.

This recap is presented in a form consistent with the models of Section
2.0 and, in particular, the discussion which follows is keyed to Figure 2.5
(The Proposed Validation Taxonomy). Table 1.2 shows the three primary catego-
ries used- in Working Group I to discuss the state of the art of validation and
relates them to the three categories used in this report.

1.4.1 Logical Proofs

The theory of proving is being adequately addressed and is not the present
Timitation. Accurate and formal statements of specifications and environmental
assumptions suitable for proof techniques may take weeks to write. Proof tech-
niques are most often applied to the validation of software at the upper level
of its hierarchical description. However, some use of proving has been made
with hardware when appropriate formal language descriptions exist.

Automatic proof generating methods exist for certain restricted classes of
problems. More powerful interactive proving techniques are also available but
require highly skilled personnel and a large commitment of computer resources.
Work on proof techniques is expected to continue and will be useful as a tool
in the validation process.

1.4.2 Analytical Models

The term "analytical models" is used here to define that category of
activities in the validation process concerned with analyzing or predicting
system performance or reliability. Proof techniques and simulation/emulation
may rightfully fit within this definition, but are categorized separately and
are specifically excluded from this discussion. Of interest here is the defi-
nition of faults (a fault model) and the analysis or estimation of a system's
response (a system model) to this fault model.

Work is progressing to unify performance and reliability considerations
into a single model, creating what is called a "performability" model. The
objective is to estimate a system's ability to perform in the presence of
faults. The major enhancement provided by this model is the definition of
"ability to perform" in terms of acceptable levels of degradation, rather than
the more common, restrictive, and by now unreasonable, pass and fail levels.

The CARE IIT reliability estimation program takes a more traditional point
of view:

“The object of CARE III is the estimation of reliability
for fault-tolerant avionic systems with failure probabili-
ties of less than 10~9 at 10 hours."



In general, the problem of estimating system failure rate and confidence
interval (stated as: the system has a failure rate of no more than X with a
confidence interval of Y) from component failure rates and confidence intervals
is unsolved. In addition, the failure probability of less than 1072 is so
stringent that everything is important. Assumptions, model approximations, and
computational round-off errors all seriously impact the credibility of the
results -obtained.

CARE III proposes to accommodate a much more realistic fault model than
previous programs, including:

1) time-dependent failure rates,
2) design errors, as well as,
3) intermittent and transient faults.

The system model also accommodates a more meaningful set of fault handling
mechanisms, including the discrimination of:

time from fault occurrence to error occurrence,
time from error occurrence to error detection,
time from error detection to fault isolation, and
time from fault isolation to system recovery.

DN =
Nt Nt st g

While recent improvements in system modeling are significant, many diffi-
culties remain. Some of the most important issues in the modeling of fault-
tolerant systems with ultra-reliability requirements are:

1. Handling large state spaces which result from the complex systems and
fault models.

2. Fault latency - this is an important issue since combinations of faults
may be much more damaging than any fault alone. A system's response
to faults occurring before recovery from the last fault is complete
must be studied.

3. Coverage - it is important to be able to assess the degree to which
the fault model is in agreement with observed reality.

4. Unexpected events - some strategy is required for dealing with events
not predicted. In these systems unpredicted events are not insignifi-

cant.

5. Failure statistics - a continued effort is required to obtain statis-
tics concerning actual component and system failure mechanisms and
rates.

6. Fault descriptions - the current understanding and description of
faults is at the circuit and logic level. It is important to develop
and understand how these low-level fault mechanisms can be faithfully
modeled in terms of higher level system behavior.



1.4.3 Experimental Testing

In this subsection, the testing of a physical device and the testing of a
simulated or emulated version of the same device is considered. Testing is the
single most frequently applied tool of validation for both hardware and soft-
ware. It is defined as the process of applying a set of inputs (selected to
reveal faults belonging to a predefined fault model) to a unit and then compar-
ing the results produced to a reference of the good response. There is no
coherent theory of testing. That is, in general, we cannot, for an arbitrarily
defined unit and fault model, define precisely how to generate or evaluate test
data to insure a fault-free unit. We are left with a great many ad hoc ap-
proaches for treating restricted cases. Even when a unit passes a test, we can
only make weak inferences concerning the unit's true condition.

The cost of testing depends upon the cost of: 1) generating input test
patterns, 2) storing these patterns as references, and 3) the length of time
required to run the test. The practical limitation of cost is one of the pri-
mary deficiencies of testing, since even relatively simple networks may require
enormous numbers of test patterns. "Standard tests for commercial LSI devices
rarely result in greater than 95% coverage (with coverage here meaning the
percentage of nodes in the circuit that truly change state during the course of
the test), because the cost of higher coverage is prohibitive. Similar state-
ments can be made with respect to software testing procedures." Current indus-
trial practice is to acceptance-test components at 3% acceptance quality level
(AQL) at 95% confidence for stuck-at faults.

Another serious limitation to testing is our inability to describe faults
at an abstract level, while retaining a proper abstraction of their true physi-
cal behavior. At the present time, the most frequently applied fault model is
the permanent stuck node model. This is not always a useful or accurate model
and there is a need to consider a more realistic fault model. This includes
the need to identify equivalent classes of faults in order to reduce the large
number of cases which need to be considered. The 1imitation of solid failures
is no longer practical. There is a pressing need for a meaningful and tracta-
ble model for intermittent and transient behavior.

Physical fault insertion has long been used to provide information and
calibration for input test pattern and diagnostic program coverage evaluation.
If the trend continues toward higher levels of integration and if physical
fault insertion is to continue as an applicable technique, then understanding
low-level fault mechanisms at the interface of higher level models is impera-
tive. Simulation/emulation have long been used as tools to attack the problem
of evaluating fault coverage capability. Simulation/emulation models typically
take much longer to run than similar testing on physical units and, therefore,
suffer more severely from the practical limitation of long execution times than
other forms of testing.

The most potentially fruitful work is in the area of design for testabil-
ity. The idea is that the testing problem, in the 1ight of increased complex-
ity and integration, cannot be solved without incorporating testing features
into the original design. There are no theoretical results which significantly



impact design and the same is true for testability design. However, in the
literature there are a fair number of detailed suggestions and "tricks" that
can ease problems if they are conscientiously applied.

In summary, there are some useful techniques for finding test input pat-
terns for reasonably small networks when the fault model used is.the solid
stuck node type. Testing is widely used, primarily because we have some intui-
tion in its use and because it is a very concrete activity. Testing alone,
however, provides a very weak basis for systems validation when ultra-
reliability is required.

1.4.4 Fault-Tolerant Systems Validation Technology
Development Summary

The preceding discussion presents more questions than it answers, and
rightly so, since many of the real issues are being clarified or defined for
the very first time. There is little work available that deals with defining
faults in a meaningful way. No treatment is offered for verifying what speci-
fications are fault-free, and very little help is available for dealing with
design faults. In addition, it is clear how very important software failures
are, and yet there is only the smallest beginning being made to develop a model
for these failures. Designing with verification in mind may be one of the most
fruitful avenues for work, and results have begun to appear in the literature.
Effort will be required on many different fronts if one is to field the systems
foreseen. The presentation in Section 2.0 creates a model that can be used to
plan future developments. This model unifies many of the disjoint concerns
briefly discussed here and gives a framework for better understanding.

If the validation process for the next generation of systems is not dif-
ferent in its basic definition or intent, then how will it be different? The
answer can be framed at two levels. At the most primary level, the distinction
is a consequence of the significant increase in the reljability requirement
specification. A typical reliability requirement for a present generation sys-
tem is:

a probability of catastrophic failure
of 10-% at 90 minutes

A typical reliability requirement for the next generation of systems is:

a probability of catastrophic failure
of 10710 at 10 hours

A second level of distinction in the complexity of the validation process is a
consequence of this increase in the reliability requirement; that is, the
realizations of the next generation of systems will be significantly more com-
plex than existing systems. Present systems typically employ from one to four
processors in a basically static configuration. The next generation systems



will employ many more processors and dynamic reconfiguration strategies, allow-
ing a wide variety of operational configurations for normal, as well as faulty,
conditions.

These two attributes, a demanding reliability specification and the atten-
dant system realization complexity, have a tremendous impact and compound the
importance of the validation process. The use of lifetesting is out of the
question, since any real failure is an extremely rare event. The use of test-
ing for induced failures as a strategy is also inadequate because no test can
be designed for events that are unforeseen. In addition, the criticality of
the intended application, passenger carrying commercial aviation, creates a
strong desire for system validation at a very high level of confidence. This
desire, coupled with the difficulty of the validation task, illuminates the
importance of developing technology for fault-tolerant flight crucial digital
electronic systems.

1.5 Report Scope and Organization

Working Group I identified general fault-tolerant avionics and control
systems validation issues. Working Group Il focused on specific validation
tasks and established a framework for further research. This document draws
upon the raw information produced at these working groups and sets as objec-
tives the presentation of:

1. a general framework for the validation of ultra-reliable fault-
tolerant digital electronic systems,

2. a set of specific tasks for the validation of the first representa-
tive ultra-reliable fault-tolerant computer systems - SIFT and FTMP,
and

3. a set of research tasks to support an ongoing effort in the develop-
ment of technology for fault-tolerant systems validation.

Section 2.0 reviews the evaluation of the validation process and presents
a general framework for validation technology resulting from the Working Group
II meeting. This general model is the framework within which the specific
tasks for SIFT and FTMP validation are summarized in Section 3.0. Throughout
the process of defining and ordering the validation tasks, it was clear that a
number of important research projects are required to support this technology.
Section 4.0 identifies research tasks in two major categories - those in sup-
port of validation and those in support of fault-tolerant computing, and
recommends specific efforts for the future development of technology required
to support validation of fault-tolerant systems which will be part of the
active control structure of energy efficient aircraft of the future. The Ap-
pendices of this report include: (I) definitions of terms, (II) task descrip-
tions generated by Working Group II, (III) the results of task ratings made by
the working group participants, and (IV) a list of Working Group II attendees.



2.0 TOWARDS A VALIDATION METHODOLOGY FOR FAULT-TOLERANT
AVIONICS COMPUTERS

2.1 Traditional Methods

A traditional approach to reliability validation is the 1ifetesting method
in which one takes n statistically identical copies of the system under test
(SUT) and terminates the test after r (1 < r < n) systems have failed. Using
the accumulated time on test T, one can derive a point estimate and con-
fidence intervals for the mean life, or MTTF, of the system. These statistical
techniques also allow one to calculate confidence intervals for system relia-
bility for any given mission time. For details of the statistical techniques
used in lifetesting,see ref. 2.

It should be clear that the accumulated time on test T, increases as
the reliability, or MTTF, of the SUT increases. For fixed r and n, this
implies that the width of the confidence intervals for MTTF, or the reliability
of SUT, increases with T.. In other words, if one desires a fixed width
of the confidence interval, one has to increase the number n of systems under
test. It follows that the number of systems required to be put under test in-
creases monotonically with the reliability of the system being tested. Fur-
thermore, the validation problem is compounded because the cost of an individ-
ual copy of the system also increases remarkably with its reliability. Thus,
the cost of validation increases more than proportionately with the reliability
of the system under test (see Figure 2.1).

2.1.1 Reliability Validation of a Simplex System

With this information in mind, let us consider the reliability validation
of conventional simplex (nonredundant) systems. Such systems are characterized
by relatively low levels of reliability and, hence, the cost of validation is
within reason. If one assumes that the time to failure of the system is expo-
nentially distributed with the failure rate A (or MTTF = 1/1), the system can
be modeled as a two-state Markov chain as shown in Figure 2.2. Note that the
state 1abeled 1 implies that the system is working properly, while state O in-
dicates the system has malfunctioned. The system is initialized to state 1 and
after a random interval of time, ends up in the failure state 0.

For such a conventional simplex system, the validation process consists of
only two steps:

1) obtaining a point estimate and confidence intervals for the failure
rate A (or the MTTF/or the system reliability for a specified dura-
tion), and

2) testing the assumption of exponentially distributed lifetimes.

Both of these steps are well within the realm of statistical lifetesting tech-
niques.



2.1.2 Reliability Validation of Redundant Systems

Next, let us consider a redundant system designed to provide greater lev-
els of reliability, e.g., a two-unit standby sparing system. One unit is
placed into operation, while the other unit is kept in a standby status. For
the purpose of reliability analysis, the system can be modeled by a three-state
Markov chain as shown in Figure 2.3. State i implies that i (= 0,1,2) units
are in proper working order. A is the failure rate of an individual unit and c
is the coverage parameter associated with the reconfiguration mechanism. The
starting state of the system is 2 and the failure state is 0. If a fault oc-
curs in state 2 and it is covered, then the system goes to state 1. If a fail-
ure occurs in state 1, then the system as a whole ultimately fails. It should
be noted that the failure of a single unit does not necessarily imply system
failure, and that for a covered fault, the system goes through two states
before reaching the failure state. This standby unit feature of a redundant
system increases system reliability over a simplex system consisting of only
one unit.

Two methods for reliability estimation (or validation) are presently
available. One method uses conventional 1ifetesting techniques which treat the
system as a black box, disregarding its internal structure. In particular, the
reliability model of Figure 2.3 is not used. Because of the increased relia-
bility of the system, the cost of validation increases (see Figure 2.1).

The second validation method utilizes the reliability model of Figure 2.3.
To evaluate system reliability using this model, one needs the values of the
failure rate A of an individual unit and coverage c of the reconfiguration
mechanism. These parameters (and their confidence intervals) are to be esti-
mated by conducting a lifetest on these units. (Note the distinction between
the lifetest of a unit and the lifetest of a standby sparing system composed of
these units. In particular, the cost of the former is likely to be much less
than that of the latter.) To estimate the coverage parameter, fault-insertion
experiments are used.

2.1.3 Inadequacy of Traditional Methods

To achieve ultra-high reliability, extensive use of standby sparing and
automatic reconfiguration is made to increase the probability that a system
will pass through many "good" states before finally reaching the failure state.
Because of the high level of redundancy, system reliability is pushed to hith-
erto unachievable levels. However, applying traditional lifetesting techniques
implies unreasonably high validation costs (see Figure 2.1). Due to the high
cost of system design and construction, it is usually difficult to have avail-
able the number of copies needed to obtain statistically significant results
from lifetesting. For example, only one copy of each. of the SIFT and FTMP sys-
tems is under construction. If one were to use a lifetest for reliability
validation, then the sample size is n = 1. Since the expected time until
the first (and only) system failure would be rather long, on the order of 108
hours, it is clearly infeasible to conduct such a test from the standpoint of
time needed. Furthermore, even if one completed such a test hypothetically,
statistical confidence in the results of the test would be negligible due to
the small sample size, n=r = 1.




2.2 Proposed Validation Methodology

2.2.1 Discussion Leading to the Proposed Methodology

The above discussion clearly implies that the traditional lifetesting ap-
proach must be abandoned when validating ultra-high reliability systems. The
problem of validating such systems is relatively unexplored, as pointed out by
Hillier and Lieberman (ref. 3):

"Statistical estimation of component [or subsystem]
reliability is well in hand, but estimation of sys-
tem reliability from component data is virtually an
unsolved problem."

In searching for an alternative technique to traditional lifetesting, we note
that one shortcoming of the traditional method is its "black box" approach
which ignores the internal structure of SUT, and is based on experimental test-
ing followed by statistical analysis. With ultra-high reliability systems, one
cannot afford to ignore the internal structure of the system. It is believed
that a validation methodology of such systems must be based on a judicious com-
bination of experimental testing, analytic modeling, and logical proofs.

Having decided that the internal structure of SUT must be an integral part
of the validation process, one has to determine further the level at which the
system structure will be considered. Green and Bourne (ref. 4) suggest that
the system should be broken down hierarchically until a level is reached where
all the necessary measurement data is either available or can be collected. It
is felt that an analytical reliability model (e.g., a Markov model) provides
just enough detail of the system structure for our purposes. Such models en-
able one to abstract the states and the state transitions of a complex system
into a relatively small and, hence, manageable graph structure. It is also
believed that data can be collected to estimate the parameters characterizing
such a model. Thus, the selection of a Markov reliability model to drive the
validation process is consistent with the suggestions by Green and Bourne. It
should be noted that Markov models have been used for system reliability pre-
diction for a long time; however, using such models for reliability validation

is believed to be new.

For the purpose of this exposition, let us assume that the Markov model of
Figure 2.3 is a proper abstraction of the reliability behavior of the system
under test. This model can be characterized by two parameters: 1) the failure
rate A of an individual unit, and 2) the coverage parameter c of the dynamic
reconfiguration mechanism. In order to predict system reliability, these two
parameters must be known. Therefore, experimental data (presumably from an
extensive lifetesting) on the failures of the individual unit must be obtained.
Applying statistical techniques, point estimate and confidence intervals on the
failure rate A can then be obtained. Similarly, fault injection simulation ex-
periments must be conducted to make inferences on the coverage parameter c.
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More complex systems (and hence more complex models) require more param-
eters to be estimated. These parameter types can be placed into two classes:

1) Parameters associated with the fault-occurrence behavior of the sub-
systems, e.g., the failure rate » in Figure 2.3. '

2) Parameters associated with the fault-handling (or fau]t-processihg)
behavior of the system, e.g., the coverage parameter ¢ in Figure 2.3.

If one examines a complex fault-tolerant system such as SIFT (ref. 5) or
FTMP (ref. 6) (see Figure 2.4 for a reliability model), it appears that fault-
handling of the system is characterized by more than one parameter, Fault-
handling is composed of phases such as fault-detection, fault-location, and
system reconfiguration. To predict system reliability, mean detection time,
mean location time, and mean reconfiguration time must first be estimated
from experimental data. In addition, coverage associated with each of these
phases must also be inferred from experimental data.

Once the above parameters have been estimated within the desired confi-
dence Timits, the reliability of the SUT can be estimated using an available
package such as, CAST, ARIES, CARSRA, SURF, CARE, CARE II, or CARE III. This,
in essence, provides us with a three-step reliability estimation procedure as
follows:

1. Estimate parameters (i.e., failure rates) associated with the fault-
occurrence behavior of the subsystems.

2. Estimate parameters (e.g., coverage) associated with the fault-
handling behavior of the system.

3. Estimate system reliability using the analytical reliability model.

Further examination of the reliability estimation procedure above, how-
ever, reveals a major weakness. It is assumed that the analytical reliability
model is a proper abstraction of system behavior. This may not necessarily be
true. Any validation methodology for ultra-high reliability systems should
identify and critically examine all assumptions in the formulation and the so-
lution of the reliability model. These assumptions should either be verified
by a logical proof (if possible), or simulation/emulation/physical experiments
must be defined to test the validity of the assumptions. In the event that
some of these assumptions do not hold to be true in light of experimental evi-
dence, preparations must be made to modify appropriately the reliability model.

In general, three classes of assumptions are made in the formulation and
the solution of the reliability model.

1) Structural Assumptions - A reliability model is an abstraction of
either a lTower level model or the physical system itself. Such a model struc-
ture is usually a directed graph consisting of a set of nodes and a set of

11



arcs. (See Figures 2.2-2.4.) Each node in the model represents a set of
states in a lower level model (i.e., a projection). Similarly, each arc in the
model represents a set of state transitions in the lower level model. It must
be proved that these abstractions are done correctly. Wensley et al. (ref. 5)
have outliined a proof procedure to show that a given abstract model is a cor-
rect structural abstraction of another lower level model. This proof procedure
is expected to become standard and available for use by the computing community
as a whole. In addition, one may look toward automata theory for help. Should
the answer of this proof procedure be negative, however, then the reliability
model must be modified, resulting perhaps in a model with a larger number of
states and state transitions.

2) Assumptions Regarding the Fault-Occurrence Behavior - A fault model
consists of a postulated class of faults, the corresponding failure rates
(which occur as labels of certain arcs in the reliability model), and the
description of the stochastic process of each failure class. An attempt must
be made not to miss any critical fault types in the fault model. This assump-
tion appears to be neither testable (in a finite fashion), nor provable. More
discussion is needed on this issue. Of related importance is whether two or
more distinct fault types have been combined into a single fault class in the
model. This assumption should be provable by structural methods described
under (1) above. The result of expanding one fault class into several is an -
expansion in the state space and the number of state transitions. The reason
for a finer classification may be due to a significant difference in detection,
location and reconfiguration times associated with the faults in question.

The second type of assumption in a fault model is the average failure rate
of each fault class. Such an assumption can be tested by standard reliability
lifetests of the associated subsystem. However, it is presumed that this
effort relies on MIL-STD-217B-type expressions, and assumption for failure rate
computations and the experience that has gone into the formulation of such a
standard. If a check reveals that the computation of failure rates is in
error, the change can be easily absorbed into a reliability model since the
failure rates appear as parameters.

The third type of assumption in a fault model is the nature of the
stochastic failure process. This is usually assumed to be a Poisson process
(or equivalently, the assumption of an exponential time-to-failure distribu-
tion). Since the failure here refers to the failure of a subsystem (such as a
processor), the assumption may be statistically tested if results of a lifetest
on the subsystem are available.

3) Assumptions on the Fault-Handling Behavior - As mentioned earlier,
mean time and coverage of each phase of the fault-handling process must be
estimated. This can be done by conducting fault-injection experiments on the
simulation/emulation/physical version of the SUT. Since the value of the cov-
erage parameter is known to have a significant effect on system reliability
(ref. 7), coverage must be measured carefully and estimated within a small con-
fidence interval.

Various phases of the recovery process (detection, location, reconfigura-
tion, etc.) have associated distributions since the corresponding times are

12
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random variables. The usual assumption is that of an exponential distribution.
This assumption can be verified by means of measurements conducted on the
prototype or on fault-injection-type simulation followed by statistical tests.
If the above verification results in the unfortunate conclusion of a nonexpo-
nential distribution, the reliability model becomes a non-Markovian model.

In summation, the results of validation tests could be a more complex
reliability model due to either a growth in the state space or a non-Markovian
model. Research efforts must, therefore, be focused on how to deal with these
two possibilities. A possible analytical approach to the state growth problem
is to look into the method of state aggregation (ref. 8), or the technique of
near-complete decomposition (ref. 9). A possible approach to the handling of
nonexponential distributions is to use the Coxian methods of stages (ref. 10).
The three techniques suggested here are used routinely in queueing theoretic
models for computer system performance analysis (refs. 11,12,13,14).

2.2.2 Details of the Proposed Methodology

As discussed in the previous section, the ultra-high reliability require-
ments of fault-tolerant computers for digital flight control applications pre-
clude the use of traditional lifetests for the purposes of validation. A vali-
dation methodology for such systems must be based on a judicious combination of
logical proofs, analytical modeling, and experimental testing.

Analytical models enable us to abstract the states and state transitions
of a complex system into a relatively small manageable graph structure. Such
graph models can be used to predict the aspects of the behavior of the system
under study. A logical proof may be used to show that the analytical model is
indeed a proper abstraction of the real system. Both the logical proof and the
tractable analytical model are based on certain atomic assumptions regarding
system behavior. These assumptions must be tested by exercising a simulation/
emulation of the system (or a physical prototype, if available).

Thus, Togical proofs, analytical models, and experimental testing are
three categories of activities that are integral parts of a validation method-
ology (see Figure 2.5). These three categories apply not only in the valida-
tion of reliability, but also in the validation of other system attributes,
such as its performance, safety, etc. However, most of our discussion here is
restricted to the validation of system reliability.

The Togical proof procedures have been collected together under Task I-2
in the list of validation tasks given in table 3.1 of this report. As dis-
cussed in the previous section, it needs to be shown that the chosen analytical
reliability model is a proper abstraction of the system under consideration.

It is possible to give a logical proof of this fact as demonstrated in refer-
ence 5. This is described herein as Task I-2. Besides this proof, it is also
proposed that a proof of correctness of system design (hardware/software), as
well as the proof that the system scheduler performs according to its design,
be presented.
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.Within the activity labeled analytical models, the development, refine-
ment, and solution of reliability models is included and identified as Task I-1
in Section 3.0. Currently, Markov models are in use, but alternative model
types, such as Petri nets should be investigated.

The third major category of activity refers to experimental testing on the
simulation/emulation/physical version of the fault-tolerant system to be vali-
dated. This category is further divided into four subcategories. The first
category refers to the validation of the fault-occurrence behavior of the sub-
systems comprising the system under test. Examples of such subsystems are the
individual processors, memories, devices, etc. If adequate lifetests can be
conducted, then the failure rate and the distribution of the times to failure
of a subsystem may be inferred using statistical techniques. Equivalently,
reliable standards such as MIL-STD-217B may be used. No task has been defined
along these lines in Section 3.0.

The next subcategory under experimental testing refers to the validation
of the fault-handling behavior of the system. This has been adequately covered
by Tasks II-7 to II-13 in Section 3.0 of this report. Since such validation
experiments require statistical methods in designing such experiments (that is,
preprocessing) and in analyzing data collected from the experiment (that is,
postprocessing), a separate Task I-3 has been defined to support such statisti-
cal activities. Task I-3 provides a bridge between the analytical reliability
model (Task I-2) and experimental testing (Task Group II).

The third subcategory under experimental testing refers to validation of
the fault-free behavior of the system (Tasks II-1 to II-6). These tests, to-
gether with the proof of design correctness (Task I-2), increase our confidence
that the system does not suffer from any design/documentation/implementation/

realization flaws.

Since we are considering ultra-high reliability systems regarding which
almost no practical experience exists, we should expect many "surprises." Ex-
ploratory testing (Task Group III) is, therefore, proposed to uncover future
surprises.

The set of steps needed in the validation of system reliability are pre-
sented in flowchart form in Figure 2.6.

As pointed out earlier, the validation procedure is driven by the reli-
ability model. The reliability model structure is obtained from the system
description, which itself is the output of the system design process. Fault
occurrence behavior of the subsystems is the second set of inputs needed for
the solution of the reliability model. A characterization of this fault occur-
rence behavior may be inferred from lifetests conducted on the subsystems.
Alternatively, standards, such as MIL-STD-217B or past experience, may be used
to characterize the fault occurrence behavior. A third set of inputs needed to
exercise the reliability model is the characterization of the fault handling
behavior of the system. This involves conducting fault-injection type experi-
ments and analysis of resulting data using statistical techniques. The charac-
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terization of the fault-handling behavior encompasses estimation of coverage
and mean times associated with various phases of the fault-handling process
(e.g., detection, isolation, reconfiguration, etc.).

Since the reliability model is an abstraction of the dynamic behavior of
the system, it is extremely desirable to present a proof that the model is a
proper abstraction of the system behavior.

‘The postulated fault model may not have covered all possible fault types.
Exploratory testing is needed to uncover any surprises and to observe system
response to inputs outside the design envelope. '

Once the three sets of inputs are available for the reliability model, it
can be evaluated numerically using available reliability analysis packages,
such as CARE III, when it becomes available. The resulting reliability predic-
tion needs to be checked against the design requirements. If the predicted
reliability is found working, a system redesign needs to be undertaken.

2.3 Future Work

From the discussion in Section 2.2, three topics on which future work is
needed are clearly evident.

(A) Investigation of reliability models other than the classical
Markovian models.

(B) Solution of reliability models with a large state space.

(C) Dealing with nonexponential distribution of times to failure and
similarly nonexponential distributions in the phases of fault-
hand1ing process (e.g., detection time, location time, etc.).

In addition, the following topics need further research.

(D) Most Markovian models assume that successive events are independent.
Methods of testing this assumption and methods of modifying the reli-
ability model, in case of dependence, are needed.

(E) Quantitative methods of software reliability estimation and predic-
tion are needed.

(F) A validation methodology that not only addresses the question of
reliability validation, but also encompasses the validation of
safety, performance, and economics of the system is needed (refs.
15,16).

Further discussion of these topics is presented in Section 4.0 of this
report.
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3.0 PRELIMINARY TASKS FOR SIFT/FTMP RELIABILITY VALIDATION

A primary objective of Working Group II was to identify specific tasks
which should be conducted in support of fault-tolerant computer validation
research. In order to provide a focus for these efforts, SIFT and FTMP were
used as example fault-tolerant computers (refs. 17,18). This section describes
the set of specific tasks which were identified by working group participants.
No claims are made as to the sufficiency of these tasks. However, the need for
these tasks was affirmed by one or more participants of Working Group II.

The proposed tasks have been classified into four major categories. These
are:

. Confirmation of System Reliability
. Fault Processing Verification

. Fault Processing Characterization
. Other Tasks

The following sections of this report describe the particular objectives of the
proposed tasks in these categories and briefly describe the tasks proposed.
These tasks are related to the validation techniques discussed in Section 2.0,

Figure 2.5.

WM

3.1 Confirmation of System Reliability

The ultra-high reliability requirements of fault-tolerant computers for
digital flight control applications preclude the use of traditional Tlifetests
for the purposes of validation. The method of validation must be based on a
critical examination of models for reliability prediction. In particular, an
attempt should be made to examine all the assumptions made in the formulation
and the solution of the model, experiments must be designed to test the valid-
ity of the assumptions wherever possible (or a proof must be given, if possi-
ble), and finally, preparations must be made to change the reliability model if
the initial assumptions are negated by experimental results.

Three major aspects of a reliability model are identified and treated
separately:

1) Reliability Model Structure

2) Fault Model (types of failure, associated failure rates and
distributions)

3) Fault Handling Behavior (coverage, detection location,
reconfiguration times, etc.)

Verification that the reliability model structure is a proper abstraction
of the actual system may be performed using a combination of logical proof and
experiment proof. The fault processing verification subgroup concentrates on
experiments to verify and parameterize the assumptions in the fault handling
behavior for a fixed (given) fault model. The fault characterization group
attempts to identify new fault classes and, hence, extend the fault model.
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Thus, all the three classes of tasks (represented by three groups) are strongly
related. Figure 3.1 summarizes the proposed verification process.

As shown in Figure 3.1, the reliability prediction is based on a relia-
bility model (e.g., a Markov model). The formulation and solution of this
model is clearly the first step, identified as Task I-1 in Table 3.1. A relia-
bility theorist for model formulation and a numerical analyst for model solu-
tion should be available.

Since model predictions are based on assumptions regarding system behav-
ior, these assumptions must be critically examined for validation.

The structure of the reliability model will be confirmed by a proof which
will show that the actual system is a proper refinement of the reliability
model (Task I-2). The complexity of the system under consideration will dic-
tate that the above proof be structured in the form of a hierarchy of proofs.

The assumptions regarding the fault-handling behavior will be validated by
conducting experiments on either the actual system or on an emulation of the
system. Statistical design of the experiments and analysis of the resulting
experimental data will be performed in Task I-3. The resulting data may re-
quire a change in the reliability model and subsequently a new prediction of
system reliability.

The tasks summarized in Table 3.1 have been recommended by Working Group
II attendees for validating ultra-reliable fault-tolerant computers, such as
SIFT and FTMP. These particular tasks address confirmation of system reliabil-.
ity through: 1) reliability modeling structures, 2) fault modeling, and
3) fault handling behavior analysis.

3.2 Fault Processing Verification

This section describes the experiments designed for fault processing veri-
fication (table 3.2). The experiments identified are based on the following
system classifications:

application software

executive software

multiprocessor functionality application software
on uniprocessor

machine operation (ISP)* . executive software
on uniprocessor

hardware (logic, power supply, etc.)

* Instruction Set Processor

17



The correctness of each of the sections mentioned above (e.g., application
software, executive, . . .) can be investigated by testing and formal proce-
dures. An ideal combination of testing and formal procedure is to prove the
design and test the implementation. At the present time, proof of correctness
of a design is in its infancy; testing for design and implementation verifica-
tion and also specification measures is suggested.

There are thirteen experiments which have been identified to test the sys-
tem. These thirteen experiments fall into two classes:

1. Functional Testing: The idea behind this set of tests is to exer-
cise each integral part of the system (e.g., single processor, single
processor executive routine, etc.). This will provide a certain
degree of confidence that the system is performing its basic func-
tional operations correctly. This set of tests is structured to
reveal design errors (e.g., wrong specification), physical faults
(e.g., short pins), etc.

2. Fault Processing Tests: This set of tests is designed to exercise the
fault handling capability of the system within its design objectives.
There are two sources that can expose the system (or different parts
of the system) to error:

a. hardware faults - It is proposed that faults be injected at the
following hardware levels:

- single stuck pins
- stuck logic

- whole chip

- common mode

- power supply

- clock

The type of faults injected in the first three levels are:

solid
intermittent
transient
design error

b. software design errors - These types of errors include:

- stress

- time

- inconsistent data
- wrong data

The first six experiments explained in this section belong to the func-
tionality testing and the next experiments belong to the fault processing veri-

fication area.
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3.3 Fault Processing Characterization

Exploratory testing is required in order to establish the bounds within
which the system can possibly operate. It is not expected that the system will
tolerate all of the test conditions of this class. On the contrary, the system
will be frequently driven into anomalous conditions. It is characteristic of
the tasks enumerated in this section (table 3.3) that provision must be made for
the machine or system under test to be reinitialized after a nonsurvivable event,
and for a data file to be off-loaded from its memory into a facility data bank.
The data files would contain sequences of syndromes perceived by the system
during the course of this testing, and the concomitant configuration changes.
Their value would be to exhibit the consequences of the test conditions as seen
at the various abstract levels at which syndrome data is available.

Another characteristic of these tasks is the ability to modulate the in-
tensity or severity of the tests in some respect. This is desirable in order
to permit some quantification of the vulnerability of the unit under test.

Metaphorically, this would yield a logical shmoo plot for the probable operating
region.

The test results must be carefully scrutinized in order to detect lapses
in the design, either because the design may be too fragile, or because the
design intent is not met. The latter situation corresponds to what has been
referred to as a "surprise." It is easier to find surprises when the system
does not otherwise fail. Here instead, the system consistently fails, and sur-
prises must be searched for by winnowing postmortem data. Excessive fragility,
meanwhile, may feed back to the design of future systems.

It may be noted that most of the tasks of this class closely resemble
other tasks in which the system recovery hypothesis is being substantiated. It
is believed, however, that the diversity in objectives between such other tasks
and these tasks sufficiently warrants the separate categories. The probing
nature of tasks in this category allows degrees of freedom not useful in the
other, and which might therefore be overlooked if the two categories were to be
combined for convenience. It is also true that these tests need not be as ex-
haustive or as accurate as the others, for a rough characterization of the
shmoo is quite adequate.

3.4 Other Tasks

During the course of Working Group II, several tasks were proposed which
do not clearly fit into either of the first three categories. In some cases,
these tasks spanned more than one of the previously defined categories. In
other cases, the recommended tasks deal with indirectly related, but highly

relevant, areas such as instrumentation. These tasks are summarized in Table
3. 4.
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4.0 SUMMARY

The preceding chapters of this report establish the importance, breadth,
and difficulty of the systems validation process. For several years, NASA-
Langley Research Center has provided leadership and funding in an ongoing
effort to develop the technology required to support this process. The working
group meetings reported here are the most recent steps in this development
effort. The challenge of validating the next generation of ultra-reliable sys-
tems can best be met if those with relevant experience and understanding of
validation of present systems can be used as resources to address the ques-

tions:

1) What is the state of the art in systems validation?

2) What are the important unanswered questions in systems
validation?

3) How can we most effectively proceed?

While it is clear that this diverse community of present experts is a
powerful asset, it is not clear how they can best be directed to produce a use-
ful product. The working group format was selected as the vehicle most likely
to utilize this asset effectively.

The working group activity, along with individual follow-up effort, has
produced significant contributions to the development of systems validation
technology. The most important of these contributions are reported in this
document. They are:

1. The identification, criticism, review, and refinement of a validation
framework and reliability validation procedure (Section 2.0).

2. The identification of tasks and facilities required to validate the
ultra-reliable specimen, fault-tolerant computers, SIFT and FTMP
(Section 3.0 and Appendix II). A significant number of these tasks
were reviewed by the working group attendees (Appendix III).

The taxonomy of the validation process with its three primary classes of
activity, proof methods; analytic methods; and experimental methods (Figure
2.5), along with the comprehensive view of the reliability validation process
(Figure 2.6) are important contributions. These models are a basis for both
present understanding and future planning efforts. It is significant that a
diverse group of professionals has had the opportunity to see and react to this
model, thus providing an important form of peer review. This review process is
one of many required to substantiate the validity of these models. In addi-
tion, a candidate set of specific experiments (23 in number) have been reviewed
and evaluated; and while no formal vote of confidence was taken, the credibil-
ity and importance of these experiments is elevated by their exposure to review
and informal assessment. The candidate experiments stimulated additional tasks
identified by the participants. The total collection of tasks provides a sub-
stantial and reasonable basis for future planning. They are the primary basis
for the recommendations made in the next subsection.
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The development of a validation technology is an ongoing, never ending,
activity and concepts requiring future deveiopment surfaced in abundance during
the working group. It became apparent that even the most mundane and well-
understood validation tasks often depend upon assumptions and estimations that
need further research effort. Special attention was given by many people to
the identification of specific research projects required to support future
validation technology development. The proposed efforts vary a great deal in
their importance and level of effort. Many of the tasks focus on fault-
tolerant computing technology, while others address validation technology;
still others are a mixture of the two. Any editing activity by necessity
applies the bias of the editor. The original, unedited task recommendations
are, therefore, given in Appendix II so that they may be preserved beyond the
abstractions necessary for this report.
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APPENDIX I -~ DEFINITIONS AND REFERENCE CODE

REFERENCE CODE

Note: The following is a preliminary, nonexhaustive collection of terms which
relate to fault-tolerant computer validation. Both hardware-oriented and
software-oriented definitions are included for the present time.

TIEEE Std. 100-1972 IEEE Standard Dictionary of Electrical
and Electronic Terms.

IEEE/FTC Interim IEEE Technical Committee on
Fault-Tolerant Computing Dictionary
of Terms.

SET "Software Engineering Terminology" -

Draft, 23 March 1978 by R. Poston and
H. Hecht - Terminology Task Group Sub-
committee on Software Engineering
Standards - Technical Committee on
Software Engineering, IEEE Computer
Society.

DACS "Data and Analysis Center for Software
(DACS) Glossary - A Bibliography of
Software Engineering Terms," Compiled
by Ms. Shirley Gloss-Soler, Rome Air
Development Center/ISISI, Griffiss AFB,
N.Y.

SPS Structured Programming Series, Vol. 15,
Validation and Verification Study,
R. L. Smith, May 1975, RADC-TR-74-300.

DEFINITIONS

Correctness Proof Technique of proving mathematically that
a given program is correct with a given
set of specifications. The process can
be accomplished by manual methods or by
program verifiers requiring manual inter-
action. (SPS)

Error (Hardware Genesis) Any discrepancy between a computed,
observed, or measured quantity and the
time specified, or theoretically correct
value or condition. (IEEE Std. 100-1972)
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Error (Software Genesis)

Failure

Fault (Hardware Genesis)

Fault (Software Genesis)

Fault Tolerance

Intermittent Fault

Stuck Fauit/Stuck Faijlure

An error is an action which results in
software containing a fault. The act of
making an error includes omission or mis-
interpretation of user requirements in
the software subsystem specification.
Incorrect translation or omission of a
requirement on the design specification
and programming errors. (SET)

The termination of the ability of an item .
to perform its required function. (IEEE
Std. 100-1972)

A physical condition that causes a device,
component, or element to fail to perform
in a required manner; for example, a
short-circuit or a broken wire. (IEEE

Std. 100-1972)

A fault is a manifestation of an error 1in
program code. The fault is evident when
entry of some input data results in the
program failing to perform the required
function. Note: fault and bug are the
same thing. (SET)

The capacity of a computer, subsystem, or
program to withstand the effects of inter-
nal faults; the number of errors produc-
ing faults a computer, subsystem, or pro-
gram can endure before normal functional
capability is impaired. (IEEE/FTC)

A temporary fault. (IEEE Std. 100-1972)
A failure in which a digital signal is

permanently held in one of its binary
states. (IEEE Std. 100-1972)
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Validation The process of determining whether execut-

ing the system (i.e., software, hardware,
user procedures, personnel in a user
environment) causes any operational dif-
ficulties. The process includes ensuring
that specific program functions meet their
requirements and specifications. Valida-
tion also includes the prevention, detec-
tion, diagnosis recovery and correction
of errors. Editorial Comment: Validation
is more difficult than the verification
process since it involves questions of

the completeness of the specification

and environment information. There are
both manual- and computer-based valida-
tion techniques. (SET)

Verification Computer program verification is the

iterative process of determining whether
or not the product of each step of the
computer program acquisition process ful-
fills all requirements levied by the pre-
vious step. These steps are system
specification verification, requirements
verification, specification verification
and code verification (SET)

NOTE TO READER: There is a lack of consistency in interpretations of the terms

"failure," "fault," and "error." Consider the following:

Then
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(1) that a failure is an event,
(2) that a fault is a condition (or state), and

(3) that an error is a datum.

the following statements apply to both hardware and software:

A failure is the event when something causes a device, component, system,
algorithm, etc. to change its state from one in which it performs its in-
tended function to one in which it does not. The something which causes
the change may or may not be known. After the failure, the device, compo-
nent, etc. is called a failed or faulty device, component, etc. Any high-
er level system of devices, etc., which cannot perform its function be-
cause a subdevice, etc. is failed, is also called failed or faulty.

A fault is the particular condition or flaw in a failed device, etc.
which differentiates it from its unfailed state.



When the function or output of a device, etc. differs from its intended
function or output, that difference is called the error. In data process-
ing systems, error means bad or wrong data. An error is all that can be
detected internally to a computing system. A higher level system, which
contains a failed device, etc. emitting errors yet continues to perform
jts function, is said to be fault tolerant. An accumulation of errors may
well be the cause of a failure of a higher level system.

Thus, a physical device fails when it "breaks down." Thereafter it contains a
fault. A system designer or software programmer can create a design or soft-
ware containing a fault. In this sense the designer or programmer, not the
design or software, failed. A fault may or may not be active; when it is, one
or more errors result. A fault is latent, transient, intermittent or permanent
dependent upon the manner in which it generates errors. A software bug may not
surface until some time after a system has been in operation; i.e., it may be
latent. A bug may cause a data error only occasionally in response to spe-
cific, infrequent input data patterns and, thus, may appear intermittent. Cus-
tomarily, a software bug is regarded as a permanent fault, remaining in the
system even after the moment of its creation by a programmer. However, it is
possible for a bug, having given rise to a data error, to disappear from an
operational system, in which case it appears as a transient. The resulting bad
data may or may not be attenuated in further processing.
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APPENDIX II - WORKING GROUP II TASK DESCRIPTIONS

CONFIRMATION OF SYSTEM RELIABILITY
Tasks I-1 through I-3

Proposed by
Preliminary Working Group Il Participants

J. Goldberg (Chairman)
W. Carter
K. Trivedi
R. Alberts

Tasks I-4 through I-11

'Proposed by
Working Group II Participants As Indicated

TASK I-1
Title: Reliability Analysis

Objectives:
1. Develop and refine mathematical models of system reliability.

2. Estimate reliability characteristics using assumed and
experimentally-derived failure statistics.

Procedure:

A mathematical model of system reliability for a subject computer will be
acquired or developed. The model should comprehend all intended fault-
handling behavior at an appropriate level of abstraction, and it should be
tractable for numerical evaluation. The faults assumed should be modeled by
type (e.g., permanent, transient, intermittent), distribution and rate. The
fault handling behavior should include fault detection time, fault location
time and reconfiguration time, and other appropriate characteristics, such as
the coverages associated with the three phases. A set of system models and
fault models may be needed to reflect varying trade-offs of fidelity and compu-

tational tractability.

The primary purpose of the model is to predict the reliability of the
given system for a range of assumed configurations (e.g., initial number of
processors) and for a range of assumed fault levels, in other words, to support
a claim for mission reliability. As a means to this end, the model will be

used for two secondary purposes:

1. specification of data to be obtained from experiments on the actual
computer (or an emulation of it) which will be used to improve the
quality of assumptions on fault occurrences and fault-handling charac-

teristics of the system,
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2. definition of requirements on the design of the computer, in a form
that allows proof that the design is consistent with the reliability
model.

The results of the tasks on Proof of Correctness and Experimental Valida-
tion of System Fault Handling will be analyzed to determine if the structure of
the model is a true representation of the system. If it is not, then the model
may need to be revised. The results of the experimental tests will be analyzed
by the Data Analysis Task (Task I-3) in order to obtain more realistic charac-
terizations of faults and system responses. New reliability predictions will
be generated on the basis of these characterizations.

Facilities:
1. Computer Support
a. Interactive computer system to support model development, includ-
ing specification and programming (e.g., TOPS20).
b. Powerful scientific computer to support model evaluation (with
high speed and high accuracy) (e.g., CYBER, DEC 10).
2. Software Support
a. Existing reliability analysis packages, e.g., CARE III.
b. Program development environment.
c. Statistical analysis/design.
d. Logical analysis (proof checker, theorem proving).
e. Logic design analysis (simulator, test generator).

Personnel:
Reliability Theorist
Numerical Analyst-Programmer

Level of Effort:
1 @1/2-time continuing
1 @ full-time continuing

Priority: Highest
TASK I-2
Title: Confirmation and Use of Design Proofs

Objective:
1. Maintain the integrity of design-correctness proofs through system
modifications and proof revision.
2. Use results of experimental test on the subject computer to confirm
assumptions made in the proof.
3. Use the proof to guide experimental tests.

Procedure:

A formal proof of the correctness of the design of the subject computer
will be acquired. This proof will likely have the form of a hierarchy, the top
level of the hierarchy being the validation of the reliability model structure.
Efforts will be applied, to the extent practical, to complete the proof within
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its intended scope. The proof will be revised to reflect changes in the system
design.

Test results will be analyzed to confirm assumptions made in the proof,
such as the functions performed at the lowest level of the proof (e.g., machine
instructions) and timing characteristics of scheduling, synchronizations and
reconfiguration. :

The proof will be analyzed to help plan experimental tests. For example,
classes of faults will be distinguished that are equivalent with respect to
some system state, in order to economize on the number of tests needed to cover
system fault behavior.

Facilities:
1. Computer Support
a. A powerful symbol-manipulation computer (e.g., DEC 10).

2. Software Support
a. Proof-checking tools (high priority).
b. Proof-of-correctness tools (lower priority).

Personnel:
Logician - Program-Correctness Theorists
- One Senior
- One Junior

Level of Effort:
Full-time - two years each

Priority: Highest
TASK I-3

Title: Design of Experiments and Analysis of Experimental Data

Objective:
Estimate parameters and distributions of various aspects of the fault-
hand1ing behavior. The parameters of interest are:

1. Estimate (for those faults that are covered)
a. mean fault detection time,
b. mean fault location time,
c. mean reconfiguration time.

2. Distributions of the above.
3. Estimate
a. fault detection coverage,

b. fault location coverage,
c. reconfiguration coverage.
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4. Suggest changes to the structure on the parameterization of the
reliability model according to the results of the data analysis.

Procedure:

1. Supply experimental designs to the fault processing verification
group, including the number and type (factorial, block, etc.) of
experiments needed, and the set of data to be obtained from each
experiment.

2. After the data is received from the fault processing verification
group, use statistical procedures to perform the above three objec-
tives. Objective 1 is a mean-value estimation problem. Confidence
intervals should be obtained using standard statistical methods.
Objective 3 is the problem of estimating proportions. Once again,
standard statistical methods are available for this purpose. Objec-
tive 2 is the problem of functional estimation. The usual hypothesis
that the respective distributions are exponential can be tested using
statistical methods such as the Kolmogorov-Smirnov test.

3. Evaluate validity of assumptions made in the construction of the
model, based on the results of the statistical tests.

Facilities:
1. Hardware - A mainframe computer is needed for carrying out the data
analysis.

2. Software - Standard statistical packages are needed:
- Statistical tables of chi-square, normal, student-t and
other distributions are needed.

Personnel:
One Statistician
One Team Member of the fault-processing verification group

Level of Effort:
Statistician at 1/2-time for one year
Fault-tolerant System Designer at full-time for one to two years

Priority: Highest
TASK DESCRIPTION WORK SHEET

Participant's Name John M. Myers

Task Number: 1-4

~ Task Title: _Alternative Modeling Techniques

Problem: Present modeling of computer reliability relies primarily on state
models (Markov for stochastic or combination for deterministic behavior).
State models have the following shortcomings:



a) No provision for concurrent operation of spatially separated subsys-
tems; and hence, an artificial large increase in a "state space.”

b) Lack of clear exposition of the tie between a link between states and
identifiable structural features.

Discussion: Petri-net models can portray concurrent operation and relate func-
tion to structure. Until recently, they have not been mathematically tract-
able. Recent advances in tractability are demonstrated for deterministic
modeling in the analysis of the FTMP clock network. The use of nets as a
structure on which to calculate probabilities also appears promising.

Proposal: Survey participants for candidate alternatives to (and views on)
Markov models; develop Petri-net-based modeling for the analysis of computer
reliability.

Personnel: Senior Analyst

Level of Effort: 1 man-year

Priority: TBD
TASK DEFINITION WORK SHEET

Participant's Name J. F. Meyer

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I-5

Task Title: Model Solution Methods

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify)

X

Objective:
Determine methods for solving stochastic performance, reliability, and
performability model (e.g., state bumping, decomposition of solutions in time

and space, approx. solutions, etc.).

Procedure:
1) Identify problem areas.
2) Classification of solution techniques.
3) Investigation of particular methods.

Facilities:

Interactive computer system.
Program development environment.
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Personnel:
)At Teast 2 reliability theorists (interaction among personnel is necessary
here).

Level of Effort:
201/4 - 1/2 tinme

Priority:
High

TASK DEFINITION WORK SHEET

Participant’'s Name Herb Hecht

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I-6

Task Title: Evaluation of Reliability Requirements

Category {(check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify)

X

Objective:

To keep the objective of the reliability confirmation in line with (1)
current technology, (2) current regulations, (3) observed incidents (aircraft
accidents and component failure patterns).

Procedure:
Establish a function for keeping track of (1) - (3) above, translate these
into AIRLAB tasks or modifications of these.

Facilities:
Office and literature.

Personnel:
1 Senior System Engineer

Level of Effort:
Full-time (this individual may also be able to make formal evaluations of
AIRLAB against current requirements).

Priority:
Highest

TASK DEFINITION WORK SHEET

Participant's Name Nicholas D. Murray
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Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: -7
Task Title: Performance Confirmation

Category (check): Reliability confirmation X
Fault processing verification
Fault processing characterization
Other (Specify) Performance confirmation

Objective:

Using a state model for reliability analysis, a definition must be made
between "good” states and "failed” states. There are two drivers for this
definition:

1) The operational behavior of the system under fault conditions
(i.e., voting, comparing, etc.).

2) Sufficient resources available to service the flight-critical applica-
tions.

The reliability model needs to be augmented to reflect sufficient performance
(or lack of performance). For instance, the SIFT has a model of the schedule/
allocation routine that supports the reliability model.

Also, it would appear that AIRLAB could be a tool to find the performance
threshold.

TASK DEFINITION WORK SHEET

Participant's Name A. Hopkins

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: ]1-8

Task Title: Performance Analysis

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Performance X

Objective:
Develop a structural model of performance capability in context with

applications requirements.

Procedure:
Analysis of sample application and the fault-tolerant computer's

scheduler.
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Facilities:
omputation

Personnel:
Computer Scientist - 6 man-months
Flight Control Engineer - 1 man-month

Level of Effort:
Computer Scientist - 6 man-months
Flight Control Engineer - 1 man-month

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name Melliar-Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I-9

Task Title: Executive Implementation Proof

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify)

X

Objective:

To establish at AIRLAB the capability to formally verify the implementa-
tion of the executive (and associated) programs against their specification.
Proof of high-level language and machine instruction will be required.

Procedure:

Collaboration with academic and research laboratories to obtain a proof
system and to become familiar with its use. Development of guidelines for
industrial implementers to facilitate proof.

Facilities:
Large multi-access computer, preferably DEC system 20.

Personnel:
1 plus Computer Scientist

Level of Effort:
Continuing

Priority:
Urgent because of very limited current capability of NASA and because of
difficulty of recruiting staff.
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TASK DEFINITION WORK SHEET

Participant's Name Melliar-Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I-10

Task Title: Application Requirements Analysis

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify)

X

Objective:
To develop methods for formally verifying the specifications of the appli-
cation tasks against the underlying aerodynamic and structural requirements.

Procedure:
Collaboration with academic and research labs and with NASA and industrial

design teams to develop capability within a few years.

Facilities:
Large multi-access computer.

Personnel:
1 plus Computer Scientist
1 plus Mathematician with background in aerodynamics and structures.

Level of Effort:
Continuing

Priority:

Unless already underway elsewhere (at required level of formality), urgent
because of Tong lead time, political delays, and difficulty of recruiting

staff.
TASK DEFINITION WORK SHEET

Participant's Name Melliar-Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I-11
Task Title: Application Program Proof

Category (check): Reliability confirmation X
Fault processing verification —_
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Fault processing characterization
Other (Specify)

Objective:

To develop, or support the development of, or to become familiar with
research programs aiming at verification of the correctness of application
programs by mathematical analysis.

Procedure:

Collaboration with academic and research labs to develop capability within
a few years. Develop programming standards to allow proof of production flight
control programs.

Facilities:
Large multi-access computer, preferably DEC system 20

Personnel:
2 plus Computer Scientist

Level of Effort:
Continuing

Priority:
Urgent because of long lead time and because of difficulty of recruiting
staff.
FAULT PROCESSING VERIFICATION
Tasks II-1 through II-13

Proposed by
Preliminary Working Group II Participants

D. Siewiorek (Chairman)
J. Abraham
J. Clary
R. Joobbani

Tasks II-14 through I1I-21

Proposed by
Working Group II Participants As Indicated
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TASK TI-1

Title: Initial Check-Up (Diagnostic)

Objective: _
Verify that the single processor performs the basic functions.

Procedure:
Run the standard diagnostic supplied by the manufacturer.

Facilities:
1. Hardware - single subject processor.
2. Software - single subject processor diagnostic programs.

Personnel:
Software Technician

Level of Effort:
Assume the diagnostic to be run
5 times a day for 15 days,
1/2 man-month

Priority: High
TASK T1-2

Title: Programmer's Manual Validation

Objective:

1. To look for design errors. To make sure the machine performs the
functions according to its specification as documented in program-

mer's manual.

2. To investigate incompletely described machine features and fully
characterize those features (e.g., 1/0, Interface, Interrupts).

Procedure:

1. Perform the functions documented in programmer's manual and validate

their correctness.

2. Investigate the system response to situations not completely speci-

fied in the programmer's manual and record the responses.

Facilities:

1. Hardware - single subject processor (e.g., BDX-930)

- any peripheral or devices interfaced to the system that

might be used later (e.g., sensors, actuators)
- test/monitor computer

programmer's manual
- program development environment

2. Software
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- on-line debugger
- experimental results recording and assessment software

Personnel:
Chief Experimenter
Software Technician

Level of Effort:
Assume 100 instructions, each instruction checked with 10 different test
cases or values (e.g., for different address mode valid and/or invalid).

If there are about 10 instructions per test and 20 instructions per day
can be executed, then a total of 2 tests per day are done,.

The total manpower for instruction testing is

100 instr. * 10 test cases = 500 man-days
2 tests/day

=~ 1.5 man-years.

About 6 man-months are also required for investigating the system response
to situations not completely specified in the Programmer's Manual.

The total required manpower then will be about 2 man-years.
Priority: High
TASK TI-3

Title: Executive Routine, Including Error Mangement (Reconfiguration)
Routines, Validation (Design Errors)

Objective:
1. To validate that executive routines respond as specified.
2. Search for design errors (or lack of specification) in executive
routines.

Procedure:
1. Treat executive routines as black boxes with only inputs and outputs.
Check response to

a. expected data, L
b. out-of-bounds data, individual
c. inconsistent data. routines

Data may be generated from examining the software, from specification
of the software module, or randomly. Make sure every path through
individual routines is exercised at least once, including error return
paths. Validate consistency of response by multiple experiments.
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2. Check executive routine interaction (pipeline). Feed a "string" of
executive routines with

a. expected data, va]iq
b. out-of-bounds data, routine
€. 1inconsistent data. sequences

3. Determine {measure) routine response time.

4. Check system error return-reporting paths (i.e., through system
hierarchy).

Facilities:
1. Hardware - single subject processor
- test monitor computer

2. Software - program development environment

a. on-line debugger like ODT, 6-12

b. experimental results recorder and assessment software

c. automated executive routine exercises that only need to know
input/output area

Personnel:
Chief Experimenter
Software Technician

Level of Effort:
Assume 5 inputs, 5 outputs per module - each module 100 assembly
language instr—20 PASCAL Tines
1000 lines PASCAL/20——=50 routines
250 inputs x 20 experiments each —=5000 experiments
4 routines/day —=3 man-weeks
cross product - each routine talks to 2 others
100 routine combinations —=6 man-weeks
3 man-months

Priority: High
TASK II-4

Title: Multiprocessor Interconnection Validation

Objective:
1. To validate the interconnections between the processors.

2. To validate the functionality of the system with respect to the inter-

connection (i.e., communication, protocol handling and related proces-
sor effects). '

40

[SAEECE



Procedure:
1. Design and run diagnostic routines that check the interconnections and
the protocol (obviously, there is no need to duplicate diagnostics
provided by the manufacturer).

2. Run single processor diagnostic on each and/or all of the processors
and observe the effects on other processors.

3. Make all the processors talk to each other and observe the behavior
(such as bus contention, missing messages, protocol handling, priority
conflicts, etc.).

4, Determine (measure) response time to communication setup, messages and
interrupts for each processor.

Facilities:
1. Hardware

subject multiprocessor
- bus monitor hardware
- test monitor computer

2. Software - program development environment
- on-line debugger
- experimental results recorder and assessment software

Personnel:
Chief Experimenter
Software Technician
Hardware Technician

Level of Effort:

Assume there are six processors connected to each other (fully connected);
running the multiprocessor diagnostic and observing the interconnection on one
process takes half a man-month, so six processors and cross product takes 1/2 *
6 = 3 man-months.

TASK TI-5

Title: Multiprocessor Executive Routine, Including Error Management
(Reconfiguration) Routines, Validation

Objective:
1. To validate that the executive routines {multiprocessor system execu-
tive and single processor executive) respond as specified.

2. To search for design errors (or lack of specification) in executive
routines. '

Procedure:
1. Treat executive routines as black boxes with only inputs and outputs.
Check response to:

- a. expected data,
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~b. out-of-bound data, and
c. inconsistent data.

2. Make sure every path through individual routines is exercised at least
once, including error return paths. Validate consistency of response
by multiple experiments.

3. Check executive routines interaction.

a. feed a string of executive subroutines with
- expected data
- out-of-bound data
- inconsistent data

4. Check the side effects of executive subroutines when running in dif-
ferent processors at the same time.

5. Check the scheduling and task assignment.
6. Determine (measure) routine response time.

7. Check system error return-reporting paths (i.e., through system
hierarchy).

Facilities:
1. Hardware - subject multiprocessor

- test monitor computer

software development environment

- on-line debugger
- experimental results recorder and assessment software

2. Software

Personnel:
Chief Experimenter
Software Technician

Level of Effort:
Same as Task II-3 except that since the executive runs on different

processors (assume 6 processors) and the system executive is added, then
we need 6*3 man-months = 18 man-months.

Priority: High
TASK 1I-6

Title: Application Program Validation (Design Errors) and Performance
Baseline

Objective:
1. To verify that application software responses are as specified.

2. Search for design errors.
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3. Measure system response parameters (time constants) with time varying
inputs.

Procedure:
1. Treat system as a black box with only inputs and outputs. Check
response to

a. expected data,

b. out-of-bounds data,

c. inconsistent data,

d. random data at boundaries, i.e., on the edge of control, where
flight transitions (or transitions to other software),

e. sequences of data,

expected

out-of-bounds

inconsistent

random.

2. Make sure every path through software is exercised (whole system).
3. Check system error return and reporting.

Facilities:
1. Hardware - total system under test

2. Software - same as Task II-3
- executive error reporting

Personnel:
Chief Experimenter
Software Technician

Level of Effort:

Approximately 4 times Task II-3, assuming application described in Task
II-13 is 4 times more complex than executive.

1 man-year

Priority: High
TASK II-7
Title: Simulation of Inaccessible Physical Failures
Objectives:
1. To enhance understanding of the relationship between physical faults
and their error manifestations.

2. To provide a data base which may be used to supplement/support physi-
cal fault injection experiments.
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Procedure:

Inaccessible Accessible

Single Processor-}-Mu]tiprocessor

User

Device |——| Gate |————| R-T —| ISP |———=| PMS* |——=Interface

*uniprocessor and/or
multiprocessor

R-T (Register-Transfer)
ISP (Instruction Set Processor)
PMS (Processor Memory Switch)

1.

2‘

7.

Develop/obtain required simulation software with fault-injection capa-
bility at each of above levels.

Provide interfaces between the packages so that parts of system can
be simulated at different levels.

Simulate fault-free system at varying (appropriate) levels of complex-
ity to validate the simulation software.

Simulate system with injected faults.

Observe relationship between injected faults, input data and fault
manifestation from Step 4.

Characterize relationships between injected faults and their manifes-
tation and attempt to abstract information into equivalence classes.

Repeat above for multiple processor system.

Facilities:

1.

2.

Hardware - 1 or more computers (dependent on whether simulations are
specially developed) - (e.g., Nanodata QM-1 plus DEC-10)

Software - simulation software

description of target machine at appropriate Tevel
diagnostic software for target machine to validate the
simulation software

simulation executive with evaluation software

monitor and application software of target machine

Personnel:
4-8 man-years
1 Engineer, 3 Programmers - (1-2 years)*

Briority:
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*NOTE: Once required simulation software exists, additional experiments will
require much less time.

TASK II-8

Title: Physical Fault Insertion: Single Processor Manifestation
Understanding and Preliminary Characterization Histograms

Objective:
1. Establish fault classes (e.g., manifestation number) to cut down
complexity of fault injection at higher system levels.

2. Generate "representative" system level histogram of detection, isola-
tion and reconfiguration times.

Procedure:
1. Physically inject faults on a single processor implementation:

. ins ) )
"solid' Sﬁt$ maﬂ1festat1on
us s u whole cni
Lincernictent'} KiienHibe

power

2. Use diagnostics to see what portion of the machine (as defined by the
diagnostic) does not work.

3. Map physical faults into "memory" or higher level manifestation
wherever possible.

4. Automatically log each experiment and its results for single proces-
sor.

Facilities:
1. Hardware

monitoring computer

- mag tape for records

- high-speed data logger (if desperate)
- test jig for inserting physical faults

2. Software - diagnostics

- instruction to executive software that processor is avail-
able

- broken diagnostic analyzer plus state dump

- modify executive (if necessary) to report errors to moni-
tor computer

- some support from executive to coordinate fault injection
with system state

Personnel:
1-2 Engineers - 3 shifts of technicians
10000/50/day = 200 days (= 1 year)
&= 4-5 man-years
worst case——=2 times longer
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Priority: High
TASK II-9

Title: Physical Fault Insertion (Multiprocessor)

Objective:
Establish fault classes (map physical faults into manifestations). This

will reduce the number of fault injections required at higher system levels.

Procedure:
1. Use the memory manifestation of physical faults classified in Task

II-8 as a basis for injecting faults at the multiprocessor level. In-
sert physical faults for other cases in each of the single processors
(i.e., unclassified faults).

2. Insert physical faults at the interconnection between each two proces-

sors
) pins

"solid" gﬁt? maﬂ1festat1on

"intermittent" whole chip

"transient" 58m28” mode

3. Map the manifestation of the fault insertion in steps 1. and 2. into
the "memory" manifestation whenever possible.

4. Automatically log each experiment and its results (verify that all
the other processors are not affected by the fault propagation).

5. Repeat the experiment a small number of times (e.g., < 100) to create
histograms for:
- fault propagation time
- detection time
- isolation time
- reconfiguration time.

Facilities:
1. Hardware - monitoring computer
- mag tape for records
- high-speed data logger (if desperate)
2. Software - diagnostics
- instruction to target system executive software that new
processor is available
- broken diagnostic analyzer plus state dump
- modify executive (if necessary) to report errors to moni-
tor computer
- some support from executive to coordinate fault injection

with system state

Personnel :
1-2 Engineers - 3 shifts of Technicians
10000/50/day = 200 days ( = 1 year) for single procéessor
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Assume 6 processors
25 man-years
worst case——2 times longer

Priority: High

TASK II-10
Title: Characterization of Executive Routine (Single Processor) Responses
Under Single Physical Failure Conditions
Objective:
I.” To classify executive routine response to hardware failures (i.e.,
manifestations).
2. These results will be used to abstract failure manifestations for
higher system levels.
3. Cut down the number of and/or simplify system level failure experi-
ments.
Procedure:
1. Inject failures into operating software. Failures can be manifested
by:
a. failure classes identified by lTower levels (e.g., Task I[I-8) and
injected by DMA,
b. physical fault insertion for the uncharacterizable failures,
2. Failures injected into:
a. data input,
b. temporary data during execution (if fault manifestation is proces-
sor sensitive),
c. code at various positions selected by
- exhaustion
- randomly
- selectively (e.g., at program control points since data instruc-
tion changes can be directly mapped to memory alterations).
3. Collect data automatically and charcterize into classes

Facilities:

1.

a. unclassified physical fault insertion
b. memory alteration

- specific areas of memory

- randomly
c. undetected or unrecoverable

Hardware - single object processor
- DMA
- monitoring computer
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- mag tape for records
- high-speed data logger (if desperate)
- test jig for inserting physical faults

2. Software - program development environment
- on-line debugger 1like ODT, 6-12
- experimental results recorder and assessment software
- automated executive routine exercises that only need to
know input/output area

Personnel:
Chief Experimenter
Software Technician f

Level of Effort:
Assuming (.9) x 10,000 maps 10 to a class—=900 classes

900 classes per each 1nstrucgion

- 5 x 1000 1ines —4.5 x 10~ experiments

- if automated and experiment every 10 seconds
———10,000 hours or 5 man-years

Priority: High
TASK II-11

Title: Multiprocessor System Executive, Including Error Management
(Reconfiguration ) Routines, Fault Handling Capabilities

Objective:
1. To classify the multiprocessor system executive response to hardware
failures.

2. To measure the system time constant and scheduling algorithm

Procedure:
1. Inject failures into the running software. Failures can be manifested

by:

a. failure classes identified by lower levels (e.g., Task II-8 and
Task II-9) and injected by DMA,
b. physical fault insertion for the uncharacterizable failures. i

2. Failures injected into:

a. input data,
‘b. temporary data during execution (if fault manifestation is fault
sensitive),
c. code at various positions selected by
- exhaustion,
- randomly,
- selectively (e.g., at program control points since data instruc- - 3
tion changes can be directly mapped to memory alterations). *
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Insert the faults characterized in Task II-10.

Collect data automatically and characterize the faults into classes:
a. physical fault insert

b. memory alteration

C. system crash

Collect data for system response:

a. detection time,

b. isolation time,
C. recovery time.

Facilities:

1.

2.

Hardware

single object processor

- DMA

- monitoring computer

- mag tape for records

- high-speed data logger (if desperate)
- test jig for inserting physical faults

Software - program development environment
- on-line debugger like 0DT, 6-12
- experimental results recorder and assessment software
- automated executive routine exercises that only need to
know input/output area

Level of Effort:

Assuming (.9) x 10,000 maps 10 to a class —=900 classes
900 classes per each instrucgion
- 5x 1000 Tines—=4.5 x 10 expgriments

Assume 6 processors —=6x4.5x10" = 27x106 experiments

- if automated and experiment every 10 seconds

——75,000 hours or 25 man-years

Personnel:
Chief Experimenter
Software Technician

Title:

TASK II-12

Application Program Fault Handling on Multiprocessors

Objective:

1.
2.

Classify application software response to hardware failures.

Measure system response parameters (time constant) in failure situa-
tions.

Procedure:

1.

Repeat Task II-11 for error handling.
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Facilities:
Same as Tasks II-6 and II-11

Task II-13
Title: Multiple Application Programs Fault Handling on Multiprocessor

Objective:
1. Characterize system scheduling and response parameters in failure
situations.

2. Classify application program and system software response to hardware
failures.

Procedure:
Repeat Task II-12 when multiple application programs are running.

Facilities:
Same as Task II-12

TASK DEFINITION WORK SHEET

Participant's Name Herb Hecht

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I1-14

Task Title: Software Reliability Research
Category (check): Reliability confirmation X

Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:
1. To identify severity of manifestations of software failures.

2. To measure software future labs as a function of stress (interrupt
rate, improper data, hardware features).

Procedure:
To implement measurement of pertinent parameters in AIRLAB.

Facilities:
Normal software development facilities SIFT and/or FTMP.

Personnel:
1. Software Engineer

2. Computer Technician
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Level of Effort:
1. 1 man-year

2. 1/2 man-year over 2 years
(these levels are based on running these tests concurrent with hard-
ware reliability tests)

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name John M. Myers

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 11-15

Task Title: Measurement of Synchronization of Clocks
Category (check): Reliability confirmation X
Fault processing verification X

Fault processing characterization
Other (Specify)

Objective:

Make a preliminary experimental determination of the behavior of
functioning clocks; develop instrumentation capable of distinguishing rare
clock failure from instrumentation failure.

Explanation:
The synchronization of a clock network is essential to fault-tolerant

computers. The only experimental results (available for atomic clocks) cast
doubt on the assumption that functioning clocks have either a gaussian

distribution or a fixed bound of phase separation. This assumption is critical

to the proofs of fault-tolerance of the clock networks.

Procedure:
Measure and record phase separation of clocks in a four-clock network,

using redundant phase measurement, with A/D converters that are offset one from

another to avoid confusing clock faults with A/D glitch; use guard indicators
to rule out effects due to power supply irreqgularities. Collect frequency
distributions of phase separation, and see what indication there is of

a) bounded,
b) gaussian, or
c) broader (e.g., unbounded) distribution.
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Facilities: _
ock network from SIFT and/or FTMP, counters, analog/digital converters,
magnetic tape recorders, phase measuring circuits (timers), i.e., electronics

laboratory with recording equipment.

Personnel:
Engineer - 2 man-months
Technician - 3 man-months
Analyst - 2 man-months

Level of Effort:
1 month to set up; then Tow-level of monitoring for two years.

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name Melliar-Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I1I-16

Task Title: Failure Severity Analysis

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:

To obtain from industry, or develop, a categorization of failure syndromes
against the severity of their consequences. This is intended to provide input
to the reliability analysis.

Procedure:

Facilities:
Personnel:

Level of Effort:

Priority:
Needed as input to reliability analysis.

TASK DEFINITION WORK SHEET

Participant's Name Kurt Moses
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Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I11-17

Task Title: App]icétion Program Validation and Performance Baseline on a
System (as distinct from Task II-6)

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:
Validate application software for the system. (Task II-6, as written, can
only validate the computer - a part of the system).

Procedure:

Interface SIFT/FTMP with a real-time simulation of a suitable aircraft,
actuator configuration, and sensor configuration. Perform the tasks of I1-6
for different aircraft and environmmental conditions (winds, gusts, etc.)

Facilities:
a) Hardware - SIFT or FTMP computer; host computer for (b).

b) Aircraft/sensor/actuator simulation, including computer interface.

Personnel:
Cobol System Engineer
Software Technician
Chief Experimenter

Level of Effort:
3 man-years, min.

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name Basil Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I1-18

Task Title: Software Fault - Containment Verification

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
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Other (Specify)

Objective:
Test should stress the system's ability to contain software errors to

affected application programs.

Procedure: _
Induce failure of applications code via random changes and generate most

malignant behavior "test" applications that are designed to stress its
containment mechanisms.

Facilities:
Object F-T computer system
Monitoring system
Software support facility

Personnel:
Analyst/Clever Programmer

Level of Effort:
6 man-months

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name Melliar-Smith

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 11-19
Task Title: Logical Analysis of Design to Reduce Size of Test Data Sets

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:
The very large number of test cases necessary for coverage can be reduced
by Togical analysis of the design, in fault free and fault present cases.

Procedure:
Collaboration with academic and industrial researchers already working on
systematic testing.

Facilities:
Large multi-access computer.
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Personnel:.
1 Computer Scientist

Level of Effort:
Continuing

Priority:
Must precede testing tasks.

TASK DEFINITION WORK SHEET

Participant's Name D. B. Mulcare

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I11-20

Task Title: Definition and Exercising of Non-Application-Dependent

Applications Software Benchmark Package*

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:
To define, evaluate, and employ a benchmark applications software program

for integrated avionics/flight control to use in other tasks.

Procedure:

Develop an appropriate mix of software modules (of varying size, critical-
ity, time constrained, rep rate, etc.) which realistically exercise the multi-
processors in a representative manner. Many modules might only be dummy
modules occupying a prescribed time slice.

Facilities:
Compiler

Personnel:
System Engineer
Software Specialist

Level of Effort:
6 mos.

Priority:
Moderate

*NOTE: This task might well be carried out as part of already designed
' Task II or III experiments.
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TASK DEFINITION WORK SHEET

Participant's Name Jacob Abraham

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 11-21

-

Task Title: Verify that the Operational System Diagnostic has a High

Coverage

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization
Other (Specify)

Objective:
Periodic diagnosis is necessary to flush out latent faults so that assump-
tions made in reliability model are valid.

Procedure:
a) Research into fault classes, prove coverage, and/or

(b) Simulation of gate level - get coverage number.

Facilities:
Fault simulator if second avenue (b) is used.

Personnel:
a) Experienced Researcher

(b) Technician

Level of Effort:
1 man-year

Priority:
High
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'

FAULT PROCESSING CHARACTERIZATION
Tasks III-1 through III-7

Proposed by
Preliminary Working Group II Participants

A. Hopkins (Chairman)
D. Rennels
J. Gault
M. Smith

Tasks I1I-8 through II1I-13

Proposed by
Working Group II Participants As Indicated

TASK 111-1
Title: False Input Information

Objective:

To determine the fault-tolerant computer system's response to input infor-
mation which is plausible (passes bound checks) but incorrect. This task will
help to characterize the damage produced in output responses dependent upon the
erroneous inputs. In addition, careful attention must be paid to detect unex-
pected disturbances in system behavior which would not normally be affected by
the input errors. This experiment will help to establish the system's vulnera-
bility to input data corruption. By causing input failures which are half
levels, the ability of the system to accurately detect and isolate single
source data errors is characterized.

Approach:
Three classes of data corruption will be used: subtle inconsistencies,

interference, and half values. For input sensor points, inject data values
which are not consistent with the simulated environment. These values will be
subtle inconsistencies which are difficult to detect by bounds checks or analy-
tic redundancy. Faulty data injection will be varied as to its duration,
severity (degree of inconsistency), and input source. The results of this task
will help to identify what input discrepancies are difficult to detect and
characterize the system's response to this class of failures.

1. For various input points, inject noise of varying intensity and dura-
tion. This will help to characterize the impact of variable length
external disturbances on system behavior. In addition, criticality
of inputs may be detected, i.e., noise at one locality may be more
damaging than at another.

2. For various input sensors, inject half level signals. This test will

help characterize the system's ability to detect and isolate faults
which may appear as inconsistent values at different points.
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Facilities: '
AIRLAB facilities for simulation of data inputs to the fault-tolerant

computing system.

'

Level of Effort:
TBD

TASK III-2
Task: Memory Alteration

Objective:
Selective memory alteration can be used to characterize the robustness of
a fault-tolerant system when confronted with a) software and design errors, b)

latent faults, c) correlated faults, and d) confusion by divergence.

Approach:
Inject changes at one or more locations within various computer memories,

either simultaneously or sequentially. Examples are tests for the effects of:

1. Simple Software Errors - Place an (identical) incorrect value in iden-
tical memory locations within various redundant computers. Tabulate
system failures as a function of number of fault insertions and area
of memory disturbed.

2. Latency - Injecting faults in various memories at uncorrelated inter-
nal locations. Tabulate system failures as a function of the rate and

domain of fault injection.

3. Confusion by Divergence - Injecting differing values in identical
locations in the memories of the various redundant computers. Tabu-
late system failures as a function of fault insertions and areas of

memory disturbed.

Facilities:
1. Multiple DMA or equivalent
2. Revised local executives
3. Special interfaces and cables

Level of Effort:
TBD

TASK III-3
Task: Configuration Control Manipulation
Objectives:

Find the Timits of the system when resources are arbitrarily removed/
replaced.

1. See what load shedding is done when resources are removed.
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OQutcome:
1'

Is minimum system response time met?
Are critical functions (on a priority level) done?
How quickly does system recover when resources are replaced?

What is system response to any syndrome?

Arbitrarily remove system resources (i.e., buses, memory) until sys-
tem response drops below a minimum time; critical functions are not
done or system dies.

a. these should be done several times with different resources re-
moved at different "times/rates."

b. view the 1oad shedding, if any, to see if vital functions are
still being carried out; who is shedded first; when is decision
made (configuration at that time).

c. see if decision maker works "consistently."”

d. what inputs are ignored as functionality degrades; what alterna-
tives are chosen?

Restore resources arbitrarily.

a. what functions restored first (configuration at that time)?
b. are resources "restarted/initialized" correctly?

"Remove/replace actions", i.e., configuration should be tabulated
against

system response time.

"critical” functions still in operation.

system inputs should be driven at a constant maximum rate.

the approaches need to be adjusted to each individual system and
how their reconfiguration management is done.

Q.0 oo
e o o

Facilities:

1'
2.
3.

Level of

Modified executive
A way to measure system response
Means to remove/replace resources arbitrarily in any order desired

Effort:

TBD

TASK II1I-4

Task: Cold and Warm Start Manipulation
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Objective:

Explore the behavior of the system when its "instinctive" initial start
capabilities are stressed. For example, what happens when some modules perceive
a power-on transient while the rest do not? More generally, wherever modules
possess special operational modes that can be stimulated apart from a system
consensus, the consequences of various configurations of such modes is to be

explored.

Approach:
The approach must be detailed in view of the specific properties of the

units under test. In general, the special modes will be directly stimulated in
various subsets of modules by the test coordination unit, which is presumed
here to be a minicomputer. Derive a generalized behavioral description from
the resultant configuration data.

Facilities:
1. Special interfaces and cables

2. Revised local executives

Level of Effort:
TBD

TASK III-5
Task: Common Mode Noise and Margin Test

Objective:

Characterize the responses of the intercommunication buses, power buses
and input/output buses to common mode noise and signals approaching and/or ex-
ceeding their boundaries, in either the time or amplitude domain.

Approach:
1. Common Mode Noise

a. inject noise on the buses (power, intercommunication, I/0) either
singly or in multiples and view the system's responses; i.e., when
does it die; what are its precursors to death?

- noise can be raised/lowered in frequency.
- noise can be raised/lowered in duration.
- noise can be raised/lowered in amplitude.
- crosstalk within a bus.

Examples - with what frequency and duration can noise appear on an inter-
communication bus before the system gets confused and can't
reconfigure?

- what size glitches can power supply support?
- at what amplitude does noise start masking the signal?

2. Margin Testing
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a. vary the signals with respect to either time or amplitude and
view the system's response; ascertain "who" failed first and
why.

Examples - vary voltage until some "units" are unable to respond; insuffi-
cient power to drive line driver.
- what are responses of buffers/drivers to signals that are
almost '1/0'?

Facilities:
1. Special interfaces and cables

2. Noise generators for EMI and RFI

3. Off-board data recorders

4. Voltage, current generators; logic analyzers
5. Revised Tocal executives

Level of Effort:
TRD

TASK II1I-6
Title: Clock Modification Tests

Objectives:

To control the system clock so that the specifications of frequency,
shape, and synchronization are stressed until the system fails. After a
failure has occurred, syndrome data can be analyzed to determine which factors
of performance degraded and what ultimately caused the failure. This test will
typify the clock operating characteristics which can be tolerated and, hence,
will indicate the margins in the clock system specification.

Approach:
The clock modifications which are specifically employed are

implementation-dependent. There are a number of alterations to the clock
signal, beyond specified values, which are to be applied.

clock rate: The clock rate is increased and performance data collected
until a system failure occurs. The behavior of the system as it :
approaches the critical clock rate will characterize the system failures
as the specified clock rate is exceeded.

synchronization (skew): The synchronization (skew) between processors is
increased until system failure occurs. As in the clock rate experiment,
the behavior of the system as the failure state is approached will be
analyzed in addition to determining the critical value of skew.

clock system noise: The clock, for single or multiple processors, is
perturbed by noise of various durations and levels (nondestructive). This
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activity will help to characterize the system's vulnerability to disturb-
ance of this type.

Facilities:
The capability to manipulate the existing clock and to obtain system syn-
dromes. There are no unique facilities required for this experiment.

TASK III-7
Title: Multiple Fault Injections

Objective:

This test is intended to characterize the "breaking point" of a fault-
tolerant system under multiple faults. Parameters of interest are the number
of insertion points, the fault rates and durations, and effects when points are
excited with faults simultaneously.

Approach:
Each of N sets of tests examines the system performance with a different

number of faults being inserted (1<i<N). The time of insertion is generated
randomly (Poisson) for each point at a rate R. For each set of tests system
failures are tabulated as a function of i and R. Sensitive points are identi-
fied at which system failures occur at below-average fault arrival rates.

Additional tests may be included which vary the fault duration, or which
insert faults simultaneousiy at selected points.

Facilities: Same as for Fault Injection (multiple copies)

Level of Effort: Arduous

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 111-8

Task Title: Multiple, but sequential, injection of faults at potentially
vulnerable times

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization X
Other (Specify)

Objective:
What if in "SIFT or FTMP" types of systems, faults were injected, for
example, in reconfiguration modes of operation? For example, a fault is
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injected, the system responds; but as it responds, another fault is injected, -

and so forth.

Procedure:
Task III-7

Facilities:
Task III-7

Personnel:
Task III-7

Level of Effort:
Task III-7

Priority:
10

TASK DEFINITION WORK SHEET

Participant's Name John M. Myers

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I11-9

Task Title: Surprise Assessment Methodology and Examples

Category (check): Reliability confirmation X
Fault processing verification X
Fault processing characterization X (cuts across all
Other (Specify) three)

Objective:
Avoid some catastrophes by early appreciation of surprises, and promote
new approaches by active "harvesting" of surprises.

Procedure:
Seek (at NASA, SRI, Draper, Bendix, Collins, etc.) surprise incidents.

Develop Petri-nets to show system as perceived before and after surprise. Show

alternative. Develop concert of mapping from one net to another as a measure
of the impact of a surprise. Disseminate.

Facilities:
Access to computer with graphics desirable.

Personnel:
Two Senior Analysts

Level of Effort:
Quarter- to half-time - two years each
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Priority:
TBD

TASK DEFINITION WORK SHEET

Participant's Name .A. H. Lindler

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet. .

Task Number: I11-10

Task Title: Evaluation of Strategy for Hand]ing Transient and/or
Intermittent Faults

Category (check): Reliability confirmation
Fault processing verification X
Fault processing characterization X
Other (Specify)

Objective:
Verify predicted system response.
Characterize system performance.

Procedure:
Insert transients and intermittents and record system response.

Facilities:
Same as Task II-9.

Personnel:
TBD

Level of Effort:
TBD

Priority:
8

TASK DEFINITION WORK SHEET

Participant's Name C. L. Seacord

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: ITI-11

Task Title: Analysis/testing to determine the tolerance or sensitivity
hardware parameter variation
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Category (check): Reliability confirmation X
Fault processing verification
Fault processing characterization X
Other (Specify)

Objective:

Determine the change in performance or (more likely) fault reaction that
will accompany the differences in hardware characteristics due either to piece
part tolerance or environment.

Procedure:

Facilities:

Personnel:
1 Computer Designer/Analyst
1 Technician
1/2-time Software Engineer

Level of Effort:
3-6 months elapsed time and about 25% hardware availability

Priority:
High to Medium

TASK DEFINITION WORK SHEET

Participant's Name A. H. Lindler

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: I11-12

Task Title: Sensitivity of system to phase lag

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization X
Other (Specify)

Objective:
Determine maximum phase lag the system will tolerate (phase lag at which
given function is not performed satisfactorily).

Procedure:
Select a set of "high" frequency tasks, force greater than normal phase
lag. '
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Facilities:
Personnel:
T8D

Level of Effort:
TBD

Priority:
8
TASK DEFINITION WORK SHEET

Participant's Name Pio De Feo

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 111-13

Task Title: Effects of Massive Failures

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify)

X

Objective:
Analyze effects of massive failures like cracked PC boards, failures which
might be generated by lightning strikes, etc.

Procedure:
Physically insert solid massive failures which involve several chips,

connectors, etc.

Facilities:
Flexible test jig.

Personnel:
1 Engineer
1-2 Technicians

Level of Effort:
TBD

Priority:
High
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OTHER TASKS
Tasks 1V-1 through IV-11
Proposed by
Working Group II Participants As Indicated
TASK DEFINITION WORK SHEET

Participant's Name John M. Myers

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: IV-1

Task Title: Theoretical Limitations of Fault Tolerance

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Theory of fault tolerance

Objective:

Show theoretical limits to what faults can be tolerated by a fault-
tolerant computer -- in the spirit of thermodynamic 1imits or efficiency.
Procedure:

Fault detection is analogous to recognition of non-theorems of a formal
system. From the mathematical results of Godel; Turing; Jauski and Church, we
know that there are fundamental limitations to the ability of any realizable
procedure to detect non-theorems. In this task one would attempt to transform
their formal results so as to illuminate fundamental bounds on what fault-
tolerant computers can mask and/or detect.

Facilities:
Pencil and Paper

Personnel:
Senior Analyst

Level of Effort:
Half-time for one year

Priority:
High

TASK DEFINITION WORK SHEET

Participant's Name John M. Myers
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Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 1v-2

Task Title: Proving Timing Correctness

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Reliability theory

Objective:
Provide programming and checking disciplines to gquarantee correct timing
of program execution.

Procedure:

Although proving the correctness of software is extremely difficult, one
significant aspect is more tractable. Petri-net analysis similar to that used
to analyze the FTMP clock network is feasible and can show the minimal restric-
tions on programming such that both systems and applications programs can be
guaranteed to run on time. The same analysis will produce a checking procedure
to guarantee that programs are written subject to the necessary restrictions.

Personnel:
Senjor Analyst

Level of Effort:
1 man-year

Priority:
TBD

TASK DEFINITION WORK SHEET

Participant's Name A. H. Lindler

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: Iv-3

Task Title: Trade-off of Diagnostic/Maintenance/Failure Low-Level
Isolation Versus Decreased Reliability

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Research Task
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Objective:

Provide a general idea of system reliability degradation resulting from
increased visibility of details of failures (sensing requires additional
complexity in terms of test points which increase vulnerability of system to
faults in addition to extra hardware and software).

Procedure:
Analysis

Facilities:
None

Personnel:
Systems Analyst and/or Reliability Analyst

Level of Effort:
TBD

Priority:
8

TASK DEFINITION WORK SHEET

Participant's Name Hopkins

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: _IV-4

. Task Title: Instrumentation for Timing Tests

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Facility development

Objective:
Develop methodology to observe timing relationships on a non-interference
basis (Heisenberg notwithstanding).

Procedure:
Evolve physical principles.
Design hardware experiments.
Design instrumentation.
Build and test.

Facilities:
TBD

Personnel:
Physicist/Engineer
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"Electronic Technician

Level of Effort:
5-10 man-months

Priority:
Highest

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not 1nc1uded in the preliminary report
may be proposed on this work sheet.

Task Number: V-5

Task Title: Sensitivity Analysis/Measurement of a System to Faults

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective:
What are the measures of fault manifestation such that we can describe how
sensitive a system is to faults? In other words, can I measure a minimal

injection for system failure?

Procedure:
Tasks III-5 to 7

Facilities:
Tasks III-5 to 7

Personnel:
Tasks II-5 to 7

Level of Effort:
Tasks II1I-6 to 7

Priority:
10

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: IV-6
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Task Title: Fault-Test Interrelationship Characterization

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective: ,

In order to perform diagnosticability analysis on "SIFT/FTMP" types of
systems, it is necessary that the complex interrelationships among faults and
tests be mentioned. In other words, what faults do tests cover/detect, and
what faults invalidate tests?

Procedure:

Injection of multiple faults (both permanent and intermittent) in subsys-
tems being tested and subsystems doing the testing. Generation of an extended
outcome matrix which describes the probability that a fault's subsystem detects
faults in a fault's sybsystem.

Facilities:
Tasks III-5 to 7

Personnel:
Tasks III-5 to 7

Level of Effort:
Tasks III-5 to 7

Priority:
10

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: Iv-7

Task Title: Composite Validation

Category (check): Reliability confirmation :
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective:

First, everyone should accept the fact that Bhere will never be a tech-
nique which will yield a single number (i.e., 107°) with which to evaluate
the reliability of a system. Instead, the validation will have to be based on
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many contributions which when collected together provide strong (irrefutable)
data/evidence regarding reliability.

Procedure:
What data bases can be generated by AIRLAB experiments and can theoreti-

cally be developed which utilize this data to form a composite element for the
validation process?

Facilities:
Exposure to AIRLAB proposals, ongoing experiments, growth plans of
AIRLAB.

Personnel:
1 Ph.D. Operations Research/Statistician

1 Assisting Analyst/Programmer

Level of Effort:
Continuous

Priority:
10

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: IV-8

Task Title: Error Pattern Classification of Generic Analog/Physical Fault
Mechanisms

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective:

Given III-5, an important question is the following: What do various sub-
systems actually do when so distributed? Does a subsystem do anything each
time or does it fall into certain modes of faulty operation that over many
repetitions of the experiment are seen many times? Can these modes be classi-
fied by error patterns as the bus (address, data, control)?

Procedure:
Tasks ITI-5 to 7

Facilities: _
Tasks III-5 to 7
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Personnel:
Same

Level of Effort:
Same

Priority:
10

TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: 1V-9

Task Title: Establishing Generic Fault Classes

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective:
To what level do we collapse faults operation and how do we describe this
faults operation? For example, memory errors a bus patterns.

Procedure:
Inject ranges of analog faults and observe, for example, bus error pat-
terns. Develop generic categories.

Facilities:
Task II-7 and Tasks III-5 to 7

Personnel:
Same

Level of Effort:
Same

Priority:
10

TASK DEFINITION WORK SHEET
Name: John Myers
Task Number: 1IV-10
Research Topics: Instrumenting Fault-Tolerant Computers
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A. What specifications are needed for SIFT and FTMP so that they can be
effectively monitored?

1) Can monitoring be done.without decreasing reliability?
2) What needs to be monitored?

B. Instrumentation Requirements

What (from item 2 above) needs to be monitored?
What bandwidth is required?

How much parallelism? Concurrency?
How to provide for flexibly-controlled extraction of significant fea-
tures, to avoid being delayed with uninteresting data?

W N
Nt N Nt g

Personnel:
Engineer, Technician, Analyst

Level of Effort:
Six man-months each

Priority: High
TASK DEFINITION WORK SHEET

Participant's Name G. Masson

Tasks which you feel are important and not included in the preliminary report
may be proposed on this work sheet.

Task Number: Iv-11

Task Title: Error Patterns on Buses as a High-Level Fault Manifestation

Category (check): Reliability confirmation
Fault processing verification
Fault processing characterization
Other (Specify) Basic research

Objective:

Above fault/changed memory locations in a high-level manifestation we
could consider error patterns on buses in the sense that even if memory words
are bad, when [ read/write, [ see the faults as an error pattern on the bus

1ines.

Procedure:
Tasks 1I-8 and 9, Tasks III-5 to 7

Facilities:
Bus injector hardware

Personnel:
Tasks III-5 to 7
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Level of Effort:
Tasks III-5 to 7

Priority:
10
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APPENDIX ITI - TASK RATING RESULTS FROM WORKING GROUP II

RELATIVE ASSESSMENT OF INITIAL PROPOSED VALIDATION TASKS
FOR FAULT-TOLERANT COMPUTER SYSTEMS

Working Group II participants were asked to assess the relative importance
of the validation tasks identified in the preliminary working group meeting
held in September. The result of these assessments is summarized in Figure
D.l.

Participants in Working Group II were told to consider each task presented
and rate them on a scale of 1 to 10. They were further told that a score of 10
was the highest rating a proposed task could receive and that 1 indicated the
lowest rated tasks.

It should be noted that Task I-3 received the highest mean score of 9.4.
Task II-10 received the lowest score of 5.7. Of the 23 proposed tasks, only 4
received a 1 - the Towest possible score. -These were Tasks I-2, II-6, II-8 and
II-10.

The task evaluation results should be taken only as an indication of the

desirability of the proposed tasks. It is clear that a much more in-depth and
precise description of objectives and methods of these tasks will be required.
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Table 1.1 Properties Which Make Ultra-Reliable Systems
Difficult to Validate

Lifetesting is inappropriate.

System design complexity makes it difficult to:

e perform failure effects analysis,

e instrument and measure all relevant parameters,

e use testing approaches since so many states and
failure modes are possible.

Large-scale integration technology realization makes it
difficult to:

e access important control and observation points,

e inject faults at a level where fault models are best
understood, and

o determine a confidence level for fault coverage.

Table 1.2 Categories for State of the Art in Validation Methods

Category in Category in
Working Group II __Working Group I
1. Logical Proofs Formal Proofs
2. Analytical Models Analysis
Reliability Modeling
3. Experimental Testing Testing

Simulation/Emulation
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Table 3.1 Proposed Validation Task Summary - Category I: Confirmation of System Reliabjlity

WG-11
Task No. Rating
1-1 8.4
I-2 8.0
I-3 9.4
I-4 (*)
(Myers)
I-5 (*)
(Meyer)
I-6 (*)
(Hecht)

Task Title

Reliability Analysis

Confirmation and Use of
Design Proofs

Design of Experiments and
Analysis of Experimental
Data

Alternative Modeling Tech-
niques

Model Solution Methods

Evaluation of Reliability
Requirements

Task Objective

To develop improved mathematical models of
system reliability.

To estimate reliability characteristics
based upon assumed and experimentally-
derived failure statistics.

To maintain the integrity of design
correctness proofs.

To use experimental results to confirm
proof assumptions.

To use proofs to guide experimental tests.

Estimate parameters and distributions of
various aspects for fault handling
behavior.

Identify and assess alternative models for
computer reliability assessment, such as
Petri nets.

To determine methods for solving stochastic
performance, reliability and perform-
ability models.

To insure compatibility of reliability
confirmation with: _
a) current technology,
b) current regulations, and
c) observed incidents.



Table 3.1 Proposed Validation Task Summary - Category I: Confirmation of System Reliability
(concluded)

WG-I1
Task No. Rating
1-7 (*)
(Murray)
1-8 (*)
(Hopkins)
I-9 (*)

(Melliar-Smith)

I-10 (*)
(Melliar-Smith)

I-11 (*)
(Melliar-Smith)

Task Title

Performance Confirmation

Performance Analysis

Executive Implementation Proof

Application Requirements
Analysis

Application Program Proof

Task Objective

To develop a state model for reliability
analysis which can distinguish between
"good" state and "failed" state.

To develop a structural model of
performance capability.

To establish at AIRLAB the capability to
formally verify the implementation of the
executive (and associated programs)
against their specification.

To develop methods for formally verifying
the specifications of the application
tasks against the underlying aerodynamic
and structural requirements.

Develop methods for verifying the correct-
ness of application programs by
mathematical analysis.

(*) Indicates task not rated by Working Group II.
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Table 3.2 Proposed Validation Tasks Summary - Category II: Fault Processing Verification

WG-11
Task No. Rating Task Title Task Objective
I1-1 8.2 Initial System Check-Out Verify that the single processor performs
(diagnostic) basic functions.

I1-2 8.0 Programmer's Manual Validation 1- To identify design errors. To ensure the
machine performs functions according to
specifications in programmer's manual.

2- To identify and fully characterize in-
completely described machine features.

I1-3 8.3 Single Processor Executive 1- To determine if executive routines respond

' Validation- as specified.
2- To identify design errors and incompletely
specified executive routines.

[1-4 8.7 Multiprocessor Interconnec- 1- To validate the interconnections between

tion Validation processors.
2- To validate multiprocessor functionality.

II-5 8.7 Multiprocessor Executive 1- To determine if multiprocessor and single

and Error Management processor executives respond as
Validation specified.
2- To identify design errors or incomplete
specification.
[I-6 7.6 Application Program Validation 1- To verify that application software

responds as specified.

2- To identify design errors.

3- Measure system parameters with time vary-
ing inputs.
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Table 3.2 Proposed Validation Tasks Summary - Category II: Fault Processing Verification

(continued)
WG-11
Task No. Rating Task Title Task Objective

[1-7 7.1 Simulation of Inaccessible 1- To enhance understanding of relationship
Physical Failures between physical faults and their error

manifestations. ’

2- To provide a data base to supplement/
support physical fault injection
experiments.

1I-8 8.0 Physical Fault Insertion: 1- To establish functional fault classes to
Single Processor Manifesta- reduce number of faults injected at
tion Understanding and higher system levels.

Preliminary Characterization 2- Generate "representative" system level
Histograms histograms of detection and isolation
times.

11-9 8.4 Physical Fault Insertion: Establish fault classes for multiproces-

Multiprocessor Sors.
11-10 5.7 Executive Routine Response 1- To classify executive routine responses
: Characterization Under to hardware failures.
Single Physical Failure 2- To abstract failure manifestations for
Conditions higher system levels in order to reduce
number of fault insertion experiments.

II-11 8.2 Multiprocessor Executive 1- To classify multiprocessing response to
Fault Handling Capabilities hardware failures.

2- To measure reconfiguration scheduling

algorithm time constant.
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Table 3.2 Proposed Validation Tasks Summary - Category II: Fault Processing Verifiéation
(continued)

WG-11

Task No. Rating

I1-12 7.3

11-13 7.1

11-14 (*)
(Hecht)

11-15 (*)
(Myers)

II-16 (*)

(Melliar-Smith)

11-17 (*)
(Moses)

Task Title

Multiprocessor Application
Program Fault Handling

Multiprocessor Multiapplica-
tion Program Fault Handling

Software Reliability Research

Measurement of Synchronization
of Clocks

Failure Severity Analysis

Application Program Validation
and Performance Baseline for
a System

Task Objective

To classify application software response
to hardware failures.

To measure system response parameters for
failure situations.

To characterize system scheduler in failure
situations.

To classify application programs and system
software to hardware failures.

To identify severity of manifestations of
software failures.

To measure software failures as a function
of stress.

To make an experimental determination of
the behavior of functioning clocks.

To develop instrumentation capable of
distinguishing rare clock failures from
instrumentation failures.

To obtain or develop a categorization of
failure syndromes against the severity of
their consequences.

To validate application software for the
system. (Note: Task II-6 addresses
computer-only validation.) :
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Table 3.2 Proposed Validation Tasks Summary - Category II: Fault Processing Verification

(concluded)

WG-T1
Task No. Rating
I1-18 (*)
(B. Smith)
11-19 (*)

(Melliar-Smith)

11-20 (*)
(Mulcare)
11-21 (*)
(Abraham)

Task Title

Software Fault-Containment
Verification

Logical Analysis of Design
to Reduce Size of Test
Data Sets

Definition and Use of Applica-
tion Benchmark Programs

Verification of Operational
System Diagnostic Coverage

Task Objective

To stress system's ability to contain
software errors to affected application
programs.

To reduce by logical analysis of the
design, the large number of test cases
necessary for coverage verification.

To define, evaluate and employ benchmark
applications software for integrated
avionics and flight control.

To verify that faults are detected with

(*) Indicates task

not rated by Working Group II.

periodic diagnosis.
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Table 3.3 Proposed Validation Task Summary - Category III: Fault Processing Characterization

WG-11
Task No. Rating Task Title

IT1I-1 7.3 False Input Information

I11-2 6.7 Memory Alteration

I11-3 8.0 Configuration Control
Manipulation

[11-4 6.6 Cold and Warm Start
Manipulation

IT1I-5 7.9 Common Mode Noise and Margin
Tests

ITI-6 7.5 Clock Modification Tests

Task Objective

To determine the fault-tolerant computer
system's response to input information
which is plausible (e.g., passes bound
checks) but incorrect.

Selective memory alteration can be used to
characterize the robustness of a fault-
tolerant system when confronted with
a) software and design errors, b) latent
faults, c) correlated faults, and
d) confusion by divergence.

To find the 1imits of the system when
responses are arbitrarily removed.

To explore the behavior of the system when
its "instinctive" initial start capa-
bilities are stressed.

Characterize the responses of intercon-
nection buses and input/output buses to
common mode noise and signals approaching
and/or exceeding their boundaries in
either the time or amplitude domain.

To determine the clock frequency, shape and
synchronization points at which the
system fails.



Table 3.3 Proposed Validation Task Summary - Category III: Fault Processing Characterization

(continued)

WG-11

Task No. Rating

I11-7 7.6
II1-8 (*)
(Masson)

111-9 (*)
(Myers)'

I1I-10 (*)
(Lindler)

I[11-11 (*)
(Seacord)

Task Title

Multiple Fault Injections

Multiple, Sequential Injec-
tion of Faults at Potentially
Vulnerable Times

Surprise Assessment Methodology

Evaluation of Strategy for
Handling Transient and/or
Intermittent Faults

Tolerance of Sensitivity to
Hardware Parameter
Variation

Task Objective

To characterize the "breaking point" of a
fault-tolerant system under multiple
faults.

To determine the vulnerability of fault-
tolerant systems to sequential faults at
critical times, such as during recon-
figuration.

To avoid some catastrophies by early
appreciation of surprises and to promote
new approaches by active "harvesting" of
surprises.

1- Verify predicted system response.
2- Characterize system performance.

Determine the change in performance or
(more likely) fault reaction that will
accompany differences in hardware
characteristics due to either piece-part
tolerance or environment.
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Table 3.3 Proposed Validation Task Summary - Category III: Fault Processing Characterization

(concluded)
WG-11

Task No. Rating Task Title Task Objective

IT1I-12 (*) Sensitivity of System to Determine maximum phase lag the system will
(Lindier) Phase Lag tolerant (i.e., phase lag at which given

function is not performed satisfacto-
rily).

I11-13 (*) Effects of Massive Failures To analyze effects of massive failure Tike

(De Feo) cracked PC boards, Tightning strikes,
etc.

(*) Indicates tasks not rated by Working Group II.
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Table 3.4 Proposed Validation Task Summary - Category IV:

Other Tasks

Task No.

WG-11
Rating

Iv-1
(Myers)

Iv-2
(Myers)

Iv-3
(Lindler)

Iv-4
(Hopkins)
V-5

(Masson)

IV-6
(Masson)

(*)

Task Title

Theoretical Limits of Fault
Tolerance

Proving Timing Correctness

Trade-0ff of Diagnostic/ .
Maintenance/Failure Low-
Level Isolation Versus
Reliability

Instrumentation for Timing
Tests

Sensitivity Analysis/Measure-
ment of a System to Faults

Fault-Test Interrelationship
Characterization

Task Objective

Demonstrate theoretical limits to what
faults can be tolerated by a fault-
tolerant computer.

Provide programming and checking disci-
plines to guarantee correct timing of
program execution.

To provide a general idea of system -
reliability degradation resulting from
increased visibility of details of
failures.

Develop methodology to observe timing
relationships on a non-interfering basis.

To determine if there are measures of fault
manifestation that can be used to
describe how sensitive a system is to
faults.

To understand complex interrelationships
among faults and tests. To determine
what faults tests cover/detect and what
faults invalidate tests.
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Table 3.4 Proposed Validation Task Summary - Category IV: Other Tasks
(concluded)

Task No.

WG-11
Rating

Iv-7

(Masson).

IvV-8
(Masson)

Iv-9
(Masson)

Iv-10
(Myers)

Iv-11
(Masson)

(*)

Task Title

Composite Validation

Error Pattern Classification
of Generic Analog/Physical
Fault Mechanisms

Establishing Generic Fault
Classes

Instrumenting Fault-Tolerant
Computers

Error Patterns on Buses as
a High-Level Fault Manifes-
tation

Task Objective

To identify and assess validation tech-
niques which when collected together
provide strong (irrefutable) data/
evidence regarding reliability.

To determine what various subsystems
actually do when disturbed. To determine
if certain modes of faulty operation are
consistent.

To determine the Tevel to which we collapse
faults operation. To describe this
faults operation.

To determine specifications and instru-
mentation requirements so that fault-
tolerant computers can be effectively
monitored.

7

To determine high-level fault manifesta-
tions, such as error patterns on buses.

(*) Indicates task not rated by Working Group II.
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All steps are iterated until frozen.

VALIDATION ACTIVITIES

Goals and
Requirements

:

Functional

Specifications

»l

Design
Specifications

Y

Implementation
Prototype System

Y

Production
System

'

Fielded System

l

Remainder of Life Cycle

Figure 1.1.- Digital

Does functional specification
meet the goals and requirements?

Does the design meet the
functional specifications?

Does the implementation meet
the design specifications?

Does the production system
agree with the prototype?

Does the fielded system’s
behavior agree with the
production system behavior?

system Tife cycle.



‘Goals and
Requirements

l

Functional
Specifications

:

Design
Specifications

i

Implementation
Prototype System

Y

Production
System

:

Fielded System

i

Remainder of Life Cycle

Bench Test, Simulation,
-§—— Engineering Model Analysis

““Hot-Bench’’ Tests, Ground Tests
“®— jp the Aircraft, Experimental
Flight Tests

-g¢—— Certification Procedures

Well-Defined Maintenance,
<®— Trouble Reporting, and
Logging Procedures

Figure 1.2.- Digital system life cycle applied to aircraft systems.
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CoST *
OF
VALIDATION

W,
-_—

SYSTEM RELIABILITY

—® ULTRA-HIGH RELIABILITY

Figure 2.1.- Cost of validation as a function of system reliability
assuming a conventional lifetesting approach.



“Good” State “Failure” State

Figure 2.2.- A two-state Markov model
of reliability.

M1-e) A

Figure 2.3.- Markov model of a two-unit standby
sparing system.
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eoe 0,1,p eoe
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eoe eee

00

th
Transitions:
ft ~—~ fault occurrence ft
fd ~—=— fault detection soe =
fh ==~ fault handling

*

=== double fault

Figure 2.4.- A Markov reliabitity model of SIFT system.



VALIDATION TECHNIQUES

LOGICAL ANALYTICAL EXPERIMENTAL
PROOFS MODELS TESTING
/\ {SIMULATION/EMULATION/PHYSICAL)
MARKOV  ALTERNATIVE
MODEL MODELS
I-1 Research
PROOF THAT RELIABILITY SCHEDULER
MODEL IS A PROPER CORRECTNESS
ABSTRACTION OF I-2
THE SYSTEM
l-2* CORRECTNESS
OF DESIGN
(HARDWARE/SOFTWARE)
-2 VALIDATION VALIDATION VALIDATION
OF FAULT- OF FAULT- OF FAULT-
OCCURRENCE HANDLING FREE BEHAVIOR
BEHAVIOR BEHAVIOR -1, 11-6
Lifetesting -7, 11113 -2
of Subsystems I3
{e.q., processors, EXPLORATORY
memories) TESTING

. . 1t
*Notation refers to validation tasks summarized in Section 3.0 of this report.

Figure 2.5.- The proposed validation taxonomy: Tree form.
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SATISFACTORY

DONE

LIFETEST ON SUBSYSTEMS,
EXPERIENCE,
USE OF STANDARDS
SYSTEM
DESIGN ]
FAULT
OCCURRENCE FAULT
SYSTEM BEHAVIOR HANDLING
DESCRIPTION BEHAVIDR
DATA
ANALYSIS
I-3
EXPLORATORY
TESTING
12 n
PROOF OF
STRUCTURE
EXPERIMENTAL
RELIABILITY VERIFICATION
MODEL 7701113
1-1*
-1
MODEL SOLUTION
RELIABILITY *Notation refers to validation
PREDICTION tasks summarized in Section
NO 3.0 of this report,

Figure 2.6.- Reliability validation procedure.
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KEY TASKS

1- Construct and Refine Reliability Model

ASSUMPTIONS ON
FAULT OCCURRENCE
AND RECOVERY
BEHAVIOR

PREDICTIONS 2— Validate Consistency of Model and Design of Computer
3~ Observe Recovery Behavier
1 4 Predict Reliability
RELIABILITY GUIDE
MODEL CONFIRM ‘ DESIGN OF
L EXPERIMENTS
) LOGICAL PROOF | EXPERIMENTAL PROOF
1 THAT COMPUTER IS THAT COMPUTER IS
CONSISTENT WITH CONSISTENT WITH
THE MODEL MODEL
CONFIRM

FAULT
CHARACTERIZATION

ASSUMPTIONS

—

K\ OBSERVATION

OBSERVE
RECOVERY
BEHAVIOR

N

Figure 3.1.- General scheme for confirmation of fault tolerant computer reliability.



IMPORTANCE TOTAL -

NOMSER 10| 9 | 8| 7|6 |85 a| 3| 2] 1] mean
I-1 11 2 211 ]o 2] 1] 1] 0] of sa |
1-2 8 3 2 2 | o | o[ o[ 2 0 1 | 8 |
1-3 12 5 0 1 t o] ol o] o] of o4
-1 9 | 2 1 3 |2 | 2] 1] 0] 0] o 82 |
-2 8 1 > | a4 | 1 2| o] 17 o of 8 |
-3 9 1 3 3 |1 13] o] o of o ss
-4 10 2 3 3 0 2 0 o | o o 87
15 10 3 2 3 0 2 0 0 o | of 87
1-6 7 0 5 3 2 1| o 1 ] o] 1 7.6
-7 6 1 4 2 1 4 1 0 2 of 71 |
11-8 10 3 1 1 0 2 1 0 1 1| s
19 7 3 6 1 | 1 | 2] o] o] o o] 8a |
11-10 4 1 2 | 1 1 2 | 2 o| 2 3] 57 |
111 10 0 3 3 0 0 2 0 1 0 8.2
1-12 4 2 | 6 0 2 3 1 0 1 0 7.3
H-13 a | 2 | & | 1 o | 2] 2 1 1| o 71 |
-1 3 2 6 1 2 2 1 0 1 0 7.3
11-2 3 1 3 | 3 2 5 1 0 1 o | &7
-3 4 2 7 3 2 1 0 0 0 0 8
-4 4 0 3 2 | 3 0 5 0 1] o | es
11-5 5 | o 7 1 4 | 1 ol o o] o 7.9
11-6 4 3 |2 3 3 | 1 2 0 0 0 7.5
-7 5 3 | a ] o 3 o | 2 0 1 0 76

Figure D.1.- Working group II assessment of the preliminary validation tasks.
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those activities required to support the ongoing development of the validation
process itself, and second are those activities required to support the design,
development, and understanding of fault-tolerant systems.
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